RATS 11.1
RATS 11.1

Procedures /

IRFRESTRICT Procedure

Home Page

← Previous Next →

@IRFRestrict can be used to build up (one restriction at a time) the \({\bf{R}}\) matrix in

\begin{equation} {\bf{R}}vec({\bf{B}}) = 0 \end{equation}

representing restrictions on the impact matrix \({\bf{B}}\) to achieve certain zero restrictions in the impulse responses at zero or more steps. The set of joint solutions to the restrictions can be written in the form:

\begin{equation} vec({\bf{B}}) = {{\bf{R}}^ \bot }\Theta \end{equation}

where \(\Theta \) is a vector of free parameters which can be estimated using CVMODEL. This is a "B" style structural model where exact identification (by zero restrictions alone) need to meet the Rubio-Ramirez–Waggoner–Zha conditions.

 

@IRFRestrict( options ) r

Parameters

r

(input and output) the matrix being constructed. If you do more than one

analysis of this type, either use a different matrix, or dimension to 0,0

before starting the second.

Options (all are required)

IRF=response matrix to unit impact shocks for the horizon being constrained

VARIABLE=variable whose response is being constrained

SHOCK=shock whose response is being constrained

Example

This is from the IRFCONSTRAIN.RPF example.

 

*

* This will do constraints of the form

*

* Impact:

* . 0 0 0

* . . . 0

* . . . .

* . . . .

*

* First step:

* . . . .

* . . 0 0

* . . . .

* . . . .

*

impulse(model=peersman,factor=%identity(%nvar),steps=3,results=irfs)

compute step0=%xt(irfs,1)

compute step1=%xt(irfs,2)

***************************************************************************

dec rect rr(0,0)

@IRFRestrict(irf=step0,variable=1,shock=2) rr

@IRFRestrict(irf=step0,variable=1,shock=3) rr

@IRFRestrict(irf=step0,variable=1,shock=4) rr

@IRFRestrict(irf=step0,variable=2,shock=4) rr

@IRFRestrict(irf=step1,variable=2,shock=3) rr

@IRFRestrict(irf=step1,variable=2,shock=4) rr

 


Copyright © 2026 Thomas A. Doan