ADTEST Procedure |
@ADTEST performs the Anderson-Darling test for normality. This compares the empirical distribution function (EDF) with the theoretical Normal distribution function.
@ADTest( options ) x start end
Parameters
|
x |
series to analyze |
|
start, end |
range of x to use. By default, the defined range of x. |
Options
MEAN=mean of assumed distribution [sample mean]
VARIANCE=variance of assumed distribution [sample variance]
Variables Defined
|
%CDSTAT |
test statistic (REAL) |
|
%SIGNIF |
approximate significance level (REAL) |
Reference
Stephens, M. A. (1974). "EDF Statistics for Goodness of Fit and Some Comparisons", Journal of the American Statistical Association, Vol. 69, pp. 730-737.
Example
This is based upon the GARCHUV.RPF sample program.
open data garch.asc
data(format=free,org=columns) 1 1867 bp cd dm jy sf
*
set dlogdm = 100*log(dm/dm{1})
*
* Estimate a GARCH(1,1) with an AR(1) mean model, saving the residuals
* and variance estimates.
*
garch(p=1,q=1,reg,resids=u,hseries=h) / dlogdm
# constant dlogdm{1}
*
* Do diagnostics on the standardized residuals.
*
set ustd = u/sqrt(h)
set ustdsq = ustd^2
@regcorrs(qstat,number=40,dfc=1,title="GARCH-LB Test") ustd
@regcorrs(qstat,number=40,dfc=2,title="GARCH-McLeod-Li Test") ustdsq
stats ustd
@adtest ustd
Sample Output
The first table is the output from the STATISTICS instruction in the example, the second is for the AD test. The Jarque-Bera test here rejects normality (because of the high kurtosis), while the A-D test accepts it.
Statistics on Series USTD
Quarterly Data From 1947:03 To 1989:01
Observations 167
Sample Mean -0.027803 Variance 0.973454
Standard Error 0.986637 SE of Sample Mean 0.076348
t-Statistic (Mean=0) -0.364162 Signif Level (Mean=0) 0.716200
Skewness -0.038943 Signif Level (Sk=0) 0.838663
Kurtosis (excess) 1.913007 Signif Level (Ku=0) 0.000001
Jarque-Bera 25.506911 Signif Level (JB=0) 0.000003
Anderson-Darling Test for Normality
Series USTD
Observations 167
AD Statistic 1.6259
Signif Level 0.1445
Copyright © 2025 Thomas A. Doan