RATS 11
RATS 11

Procedures /

BJIDENT Procedure

Home Page

← Previous Next →

@BJIDENT assists in identifying a Box-Jenkins model by computing and graphing the correlations of the series in various differencing combinations.


@BJIDENT( options )  series   start   end

Parameters

series

series to analyze

start, end

range for calculations. By default, range of series

Options

DIFF=maximum regular differencings[0]

SDIFFS=maximum seasonal differencings[0]

 

TRANS=[NONE]/LOG/ROOT

Transformation to apply to data

 

SPAN=seasonal span

NUMBER=number of autocorrelations to compute [default depends upon data]


METHOD=YULE/[BURG]

Selects method used to compute correlations (see CORRELATE instruction for details)
 

REPORT/[NOREPORT]

QSTATS/[NOQSTATS]

REPORT shows a table with the ACF's and PACF's. When used with REPORT, QSTATS includes the Q-statistics in the report. The REPORT and QSTATS tend to be rather uninteresting at this phase of the analysis since it isn't expected that the series will be white noise or anything close to it.

 

[GRAPH]/NOGRAPH

Do graphs?

 

SPIKE/[NOSPIKE]

SPIKE selects a "spike" graph, rather than a bar graph, with the regular and partial autocorrelation graphs separated vertically.
 

SEPARATE/NOSEPARATE  [default is NOSEPARATE except when using SPIKE]

Use SEPARATE if you want the correlations and partial correlations plotted as separate graphs (one a single page).
 

[ZERO]/NOZERO

Display the first correlation

 

MAX=maximum/minimum value on vertical axis scale [1]

Examples

This does @BJIDENT on a series with strong seasonality, so it includes both the DIFFS=1 and SDIFFS=1 options. This will produce autocorrelation graphs for (0,0), (0,1), (1,0) and (1,1) combinations of regular and seasonal differences.

 

open data aus_electric.xls

calendar(m) 1980

data(format=xls,org=columns) 1980:1 1995:8 elec

*

graph(header="Figure 7-9 Australian monthly electricity production")

# elec

*

* BJIDENT with both the DIFFS and SDIFFS option will do all combinations

* of 0 or 1 regular and 0 and 1 seasonal differences.

*

@bjident(diffs=1,sdiffs=1,method=burg,number=40) elec



 

This does @BJIDENT on a series of housing starts. The output is shown below. For illustration, this includes the REPORT and QSTATS options, though there is little useful information in those. It's the graph of the correlations and partial autocorrelations that is most helpful. Here it would tend to show that the series is borderline between needing a difference, or being fit with an AR(2) as it stands.

 

open data house.dat

cal(m) 1968:1

data(format=prn,org=columns) 1968:1 1996:6

*

graph(key=upright,footer=$

  "Figure 10.2. U.S. Housing Starts and Completions, 1968:01-1996:06") 2

# starts

# completions

*

@bjident(number=24,report,qstats) starts 1968:1 1991:12

Sample Output


 


 

As mentioned above, the report information generally isn't very useful, since there's no reason to suspect that the series (or any of its differences) will be serially uncorrelated, so the fact that the Q's are huge isn't a surprise.


 

            0 Differences of STARTS

Lag   Corr     Partial    LB Q    Q Signif

  1   0.940     0.940    256.988    0.000

  2   0.913     0.254    500.281    0.000

  3   0.886     0.065    730.153    0.000

  4   0.850    -0.072    942.502    0.000

  5   0.810    -0.096   1136.053    0.000

  6   0.770    -0.061   1311.587    0.000

  7   0.726    -0.071   1468.086    0.000

  8   0.675    -0.099   1604.138    0.000

  9   0.633     0.006   1723.939    0.000

 10   0.575    -0.127   1823.413    0.000

 11   0.531     0.031   1908.316    0.000

 12   0.486     0.013   1979.661    0.000

 13   0.447     0.072   2040.426    0.000

 14   0.388    -0.178   2086.292    0.000

 15   0.335    -0.085   2120.682    0.000

 16   0.277    -0.123   2144.268    0.000

 17   0.219    -0.055   2159.110    0.000

 18   0.166    -0.020   2167.642    0.000

 19   0.113     0.008   2171.630    0.000

 20   0.062    -0.012   2172.842    0.000

 21   0.008    -0.037   2172.864    0.000

 22  -0.033     0.047   2173.208    0.000

 23  -0.084    -0.036   2175.447    0.000

 24  -0.132    -0.081   2181.000    0.000


 


Copyright © 2025 Thomas A. Doan