RATS 11
RATS 11

Procedures /

EGTESTRESIDS Procedure

Home Page

← Previous Next →

@EGTESTRESIDS performs an Engle-Granger residual-based cointegration test taking as input the residuals from a preliminary regression. @EGTEST is similar, but takes as input the endogenous variables and runs the preliminary regression.

@EGTESTRESIDS(options)   u start end

Parameters

u

residuals from preliminary Engle-Granger regression (static regression of one endogenous variable on the others plus deterministics)

start, end

estimation range, by default, the range of u.

Options for Selecting Lags

LAGS=number of additional lags [0]

MAXLAGS=maximum number of additional lags to consider [number of observations^.25]

You can use either of these to select either the (maximum) number of additional lags. If you don't use either option, the LAGS default of 0 will be used for METHOD=INPUT and the MAXLAGS default will be used for the others.

 

METHOD=[INPUT]/AIC/BIC/HQ/TTEST/GTOS

METHOD=INPUT uses the input number of LAGS only. METHOD=AIC/BIC/HQ tests the D-F regressions for everything from 0 to LAGS/MAXLAGS and chooses the minimizer for the chosen criterion. METHOD=TTEST/GTOS starts with the full set of lags and deletes lags as long as the final one has a marginal significance level less than the cutoff given by the SIGNIF option. (GTOS is short for General-TO-Specific).

 

SIGNIF=cutoff significance level for METHOD=TTEST or GTOS[.10]

Other Options

NVAR=number of endogenous variables in the cointegrating regression, counting the dependent variable [2]

 

DET=NONE/[CONSTANT]/TREND

Choose what deterministic components were included in the original regression. This changes the critical values.

 

[PRINT]/NOPRINT

TITLE=Title for output ["Engle-Granger Cointegration Test"]

Variables Defined

%NOBS

number of regression observations + 1 (tables are based upon this) (INTEGER)

%CDSTAT

test statistic (REAL)

%NVAR

number of variables (INTEGER)

%%AUTOP

number of lags used  (INTEGER)

Example

*

* Pindyck & Rubinfeld, Econometric Models and Economic Forecasts, 4th edition

* Example 16.5 from page 515

*

open data ex165.xls

calendar(q) 1960:1

data(format=xls,org=columns) 1960:1 1995:4 gcq gydq

*

* We first have to check that the series involved have a unit root. This

* checks that with a variety of choices for the number of lags.

*

@dfunit(lags=1) gcq

@dfunit(lags=2) gcq

@dfunit(lags=4) gcq

@dfunit(lags=1) gydq

@dfunit(lags=2) gydq

@dfunit(lags=4) gydq

*

linreg gcq

# constant gydq

*

@egtest

# gcq gydq

Sample Output

The first part of the output is from a linear regression of the first endogenous variable on all the others plus the chosen deterministic variables. The second is the test statistic generated from the first-stage residuals.


 

Linear Regression - Estimation by Least Squares

Dependent Variable GCQ

Quarterly Data From 1960:01 To 1995:04

Usable Observations                       144

Degrees of Freedom                        142

Centered R^2                        0.9973657

R-Bar^2                             0.9973472

Uncentered R^2                      0.9997470

Mean of Dependent Variable       2899.6409692

Std Error of Dependent Variable   948.3894538

Standard Error of Estimate         48.8474061

Sum of Squared Residuals         338821.81013

Regression F(1,142)                53762.6779

Significance Level of F             0.0000000

Log Likelihood                      -763.2931

Durbin-Watson Statistic                0.3254

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  GYDQ                           0.93461707   0.00403082    231.86780  0.00000000

2.  Constant                     -89.93878564  13.52077674     -6.65189  0.00000000

 

Engle-Granger Cointegration Test

Null is no cointegration (residual has unit root)

Regression Run From 1960:02 to 1995:04

Observations         144

Using fixed lags 0

Constant in cointegrating vector

Critical Values from MacKinnon for 2 Variables

 

Test Statistic -3.61347*

1%(**)         -3.97470

5%(*)          -3.37957

10%            -3.07473


 


Copyright © 2025 Thomas A. Doan