|
Statistics and Algorithms / Probability Distributions / GEV (Generalized Extreme Value) |
The Generalized Extreme Value distribution is a family of distributions which form the possible limiting distributions for the extreme values of a set of i.i.d. random variables.
|
Parameters |
\(k\) is the tail or shape parameter, \(\mu\) is the location and \(\sigma\) is the scale. \(\sigma\) needs to be positive; the other two can take any value. |
|
Kernel |
\(\frac{1}{\sigma }t(x)^{k + 1} e^{ - t(x)} \) \(t(x) = \left[ {1 + k\left( {\frac{{x - \mu }}{\sigma }} \right)} \right]^{ - \frac{1}{k}} \,{\rm{if}}\,k \ne 0,\exp \left( { - \frac{{x - \mu }}{\sigma }} \right) \,{\rm{if}}\,k = 0\) |
|
Support |
Depends upon \(k\). \(\left( { - \infty ,\infty } \right)\) when \(k=0\) |
|
Main Uses |
An extreme value disturbance in the index of a choice model generates a logit model. Properly scaled can be used for handling tail probabilities. |
|
Density Function |
%loggevdensity(x,k,mu,sigma) is the log density (x|k,mu,sigma) |
|
Distribution Function |
%gevcdf(x,k,mu,sigma) is the cumulative CDF for (x|k,mu,sigma)
%invgev(p,k,mu,sigma) is the inverse CDF for probability p given parameters k, mu and sigma. |
Copyright © 2025 Thomas A. Doan