LAGPOLYROOTS Procedure |
@LagPolyRoots produces a table of the inverted roots of the input lag polynomial, showing the modulus and (for complex roots) the period.
@LagPolyRoots lagpoly
Parameters
|
lagpoly |
polynomial represented as a VECTOR with \(p(x) = v(1) + v(2)x + v(3)x^2 + ... + v(p + 1)x^p \) |
Options
TITLE=title for report ["Polynomial Roots"]
Example
This is from the TARMODELS.RPF example, analyzing the roots of the upper polynomial in a threshold model.
@LagPolyRoots(title="Above Threshold Polynomial") %eqnlagpoly(upper,x)
Output
Above Threshold Polynomial
Real Imag Modulus Period
-0.246 -1.010 1.039
-0.246 1.010 1.039 3.471
0.230 -0.933 0.961
0.230 0.933 0.961 4.726
0.944 -0.095 0.948
0.944 0.095 0.948 62.535
0.727 -0.559 0.917
0.727 0.559 0.917 9.590
-0.654 0.585 0.878 2.605
-0.654 -0.585 0.878
-0.836 -0.000 0.836
This has a mix of (mainly) periodic roots, with a slightly explosive root pair with a period of 3.47 years.
Copyright © 2025 Thomas A. Doan