RATS 11
RATS 11

Procedures /

MEANGROUP Procedure

Home Page

← Previous Next →

@MEANGROUP does pooled mean group estimation for panel data. Pooled mean group estimates the coefficient vector of the regression by an equally-weighted average of the individual estimates. @SWAMY is a similar procedure, but does the Swamy random coefficients GLS estimator.

 

@MeanGroup( options )   depvar start end

# list of regressors (in regression format)

Parameters

depvar

dependent variable

start, end

range for regression. By default, the maximum range permitted by all variables involved in the regression.

Options

SMPL=standard SMPL option [none]

 

[PRINT]/NOPRINT

TITLE="title for output" ["Pooled Mean Group"]

 

DEFINE=equation to define [none]

Variables Defined

%BETA

estimates of mean of coefficient process (VECTOR)

%XX

estimates of covariance matrix of mean coefficient (SYMMETRIC)

%%IBETAS

individual coefficients (VECT[VECTOR]). %%IBETAS(i) is the coefficient vector for individual i.

%%IXX

individual covariance matrices (VECT[SYMMETRIC]). %%IXX(i) as the covariance matrix for individual i

Example

*

* Based upon Greene, Econometric Analysis, 7th Edition

* Example 11.19 from p. 418-419

*

open data produc_fix.prn

calendar(panelobs=17,a) 1970:1

data(format=prn,org=columns,left=3) 1//1970:01 48//1986:01 yr p_cap hwy water util pc gsp emp unemp

*

* Log all variables except unemp

*

dofor s = gsp p_cap hwy water util pc emp

   log s

end dofor

*

linreg gsp

# constant pc hwy water util emp unemp

@meangroup gsp

# constant pc hwy water util emp unemp

 

Sample Output

This shows the output from the LINREG (OLS) and @MEANGROUP. Both are weighted averages of the individual estimates, but LINREG gives "precision-weighted" averages (giving higher weights to the individuals with high X'X) and @MEANGROUP uses simple averages.


 

Linear Regression - Estimation by Least Squares

Dependent Variable GSP

Panel(17) of Annual Data From      1//1970:01 To     48//1986:01

Usable Observations                       816

Degrees of Freedom                        809

Centered R^2                        0.9930534

R-Bar^2                             0.9930018

Uncentered R^2                      0.9999351

Mean of Dependent Variable       10.508849637

Std Error of Dependent Variable   1.021131864

Standard Error of Estimate        0.085422808

Sum of Squared Residuals         5.9033184420

Regression F(6,809)                19275.0232

Significance Level of F             0.0000000

Log Likelihood                       853.1372

Durbin-Watson Statistic                0.1877

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                      1.926004375  0.052503182     36.68357  0.00000000

2.  PC                            0.312023086  0.011087500     28.14188  0.00000000

3.  HWY                           0.058881719  0.015411448      3.82065  0.00014330

4.  WATER                         0.118580557  0.012356570      9.59656  0.00000000

5.  UTIL                          0.008555123  0.012354029      0.69250  0.48882423

6.  EMP                           0.549695456  0.015536879     35.38004  0.00000000

7.  UNEMP                        -0.007270503  0.001383632     -5.25465  0.00000019


 

Linear Regression - Estimation by Pooled Mean Group

Dependent Variable GSP

Panel(17) of Annual Data From      1//1970:01 To     48//1986:01

Usable Observations                       816

Degrees of Freedom                        809

Mean of Dependent Variable       10.508849637

Std Error of Dependent Variable   1.021131864

Standard Error of Estimate        0.392344723

Sum of Squared Residuals         124.53291476

Durbin-Watson Statistic                0.0873

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                      0.964589401  0.639786148      1.50767  0.13163780

2.  PC                            0.027555729  0.036106378      0.76318  0.44535501

3.  HWY                           0.086149959  0.102872837      0.83744  0.40234458

4.  WATER                         0.053177878  0.044939890      1.18331  0.23668581

5.  UTIL                          0.066369134  0.078099686      0.84980  0.39543615

6.  EMP                           1.041287097  0.067057858     15.52819  0.00000000

7.  UNEMP                        -0.002475663  0.001438341     -1.72119  0.08521578


 


Copyright © 2025 Thomas A. Doan