RATS 11
RATS 11

Procedures /

REGANOVA Procedure

Home Page

← Previous Next →

@REGANOVA is a post-processor for a linear regression which displays an ANOVA table. It has no parameters, picking all information out of the accessible variables. To use it, run a LINREG first, then do @REGANOVA.

 

@REGANOVA(no options or parameters)

Example

*

* Makridakis et al, Forecasting Methods and Applications, 3rd edition

* Example from pp 205-207

*

open data pcv.dat

data(format=prn,org=columns) 1 19 gdpw_eur pdpeall

*

linreg pdpeall

# constant gdpw_eur

*

* Scatter plot with regression line

*

scatter(footer="Figure 5-12 PCV Sales Regression",line=%beta,$

 hlabel="GDP Western Europe",vlabel="PCV Industry Sales")

# gdpw_eur pdpeall

*

* Residuals

*

scatter(footer="Figure 5-13 Residual Plot",$

 hlabel="GDP Western Europe",vlabel="Residuals")

# gdpw_eur %resids

*

* Analysis of variance table (page 214)

* (The F-statistic is in the standard regression output)

*

@reganova

Sample Output

This first shows the output from the LINREG, with the usual F-statistic. The @REGANOVA output is below that and gives the breakdown on the components that go into the F. The ratio of the two mean-squares is the F.

 

Linear Regression - Estimation by Least Squares

Dependent Variable PDPEALL

Usable Observations                        19

Degrees of Freedom                         17

Centered R^2                        0.9010023

R-Bar^2                             0.8951789

Uncentered R^2                      0.9999442

Mean of Dependent Variable       8.7249938421

Std Error of Dependent Variable  0.2129504110

Standard Error of Estimate       0.0689450232

Sum of Squared Residuals         0.0808080758

Regression F(1,17)                   154.7211

Significance Level of F             0.0000000

Log Likelihood                        24.9113

Durbin-Watson Statistic                2.4076

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -4.207701265  1.039835249     -4.04651  0.00083836

2.  GDPW_EUR                      1.598565305  0.128515536     12.43869  0.00000000


 

Regression ANOVA for Dependent Variable PDPEALL

  Source   Sum of Squares DF Mean Square
 

Regression   0.7354537202  1 0.7354537202

Residuals    0.0808080758 17 0.0047534162

 

Total        0.8162617960 18


 


Copyright © 2025 Thomas A. Doan