|
Statistics and Algorithms / Probability Distributions / Student-t (univariate) |
|
Parameters |
Mean (\(\mu \)), Variance of underlying Normal (\(\sigma ^{2}\)) or of the distribution itself (\(s^{2}\)), Degrees of freedom (\(\nu \)) |
|
Kernel |
\(\left( 1+\left( x-\mu \right) ^{2}/\left( \sigma ^{2}\nu \right) \right) ^{-\left( \nu +1\right) /2}\) or \(\left( 1+\left( x-\mu \right) ^{2}/\left( s^{2}(\nu -2)\right) \right)^{-\left( \nu +1\right) /2}\) |
|
Support |
\(\left( -\infty ,\infty \right) \) |
|
Mean |
\(\mu \) |
|
Variance |
\(\sigma ^{2}\nu /\left( \nu -2\right) \) or \(s^{2}\) |
|
Main Uses |
Small sample distributions of univariate statistics. Fatter-tailed alternative to Normal for error processes. Prior, exact and approximate posteriors for parameters with unlimited ranges. |
|
Density Function |
%TDENSITY(x,nu) is the (non-logged) density function for a standard (\(\mu =0,\sigma ^{2}=1\)) t.
%LOGTDENSITY(ssquared,u,nu) is the log density based upon the \(s^{2}\) parameterization. %LOGTDENSITYSTD(sigmasq,x-mu,nu) is the log density based upon the \(\sigma ^{2}\) parameterization.
Use %LOGTDENSITY(ssquared,x-mu,nu) to compute \(\log f\left( x|\mu ,s^{2},\nu\right) \) and %LOGTDENSITYSTD(sigmasq,x-mu,nu) to compute \(\log f\left( x|\mu ,\sigma ^{2},\nu \right) \). |
|
CDF |
%TCDF(x,nu) is the CDF for a standard t. %TTEST(x,nu) is the two-tailed probability of a standard t |
|
Inverse CDF |
%INVTCDF(p,nu) is the inverse CDF for a standard t. %INVTTEST(p,nu) is the critical value for a two-tailed standard t test. |
|
Random Draws |
%RANT(nu) draws one or more (depending upon the target) standard t's with independent numerators and a common denominator. To get a draw from a t density with variance ssquared and nu degrees of freedom, use %RANT(nu)*sqrt(ssquared*(nu-2.)/nu). |
Copyright © 2025 Thomas A. Doan