RATS 11
RATS 11

SUR.RPF is an example of (linear) systems estimation. It computes joint GLS estimates for a two company subset for Grunfeld’s investment equations.

 

The Grunfeld data is a common “textbook” data set for small panels. The full data set has annual data from 1935 to 1954 on 11 companies with investment (the dependent variable), capital stock and the firm’s market value (explanatory variables). The two countries included in the example are GE and Westinghouse.

 

Because the instruction SUR operates off EQUATIONs, the following are used to define them:

 

equation  geeq  ige

# constant  fge   cge

equation  westeq  iwest

# constant  fwest cwest

 

Since this is also doing OLS estimates, it’s also possible to estimate by LINREG and define the define the equation at the same time:

 

linreg(define=geeq)  ige

# constant fge cge

 

If the EQUATIONs have already been defined, the LINREGs can be done with:

 

linreg(equation=geeq)  ige

linreg(equation=westeq)  iwest

 

There are two ways to get the description of the overall model into the SUR instruction: with supplementary cards or with a MODEL. With just two equations, the former is probably easier, but we’ll show both. The unrestricted SUR can be done with

 

sur(vcv)   2

# geeq

# westeq

 

or with

 

group grunfeld geeq westeq

sur(model=grunfeld)

 

This uses RESTRICT to test for equality between the “F” (market value) coefficients. In the stacked coefficient vector, the FGE coefficient is position 2 and the FWEST is position 5:

 

restrict(title="Test of equality of F coefficients") 1

# 2 5

# 1 -1 0

 

and this estimates the system subject to equality constraints across all the equations by using the EQUATE option:

 

sur(model=grunfeld,equate=||2,3||)

 

which forces the second (Fxx) and third (Cxx) coefficients to be equal across equations. Note that this rearranges the coefficient vector, so the coefficients which are forced equal are listed first. In this case, there are actually only four free coefficients: Fxx, Cxx, CONSTANT in GE and CONSTANT in WEST. The output will display the information in the usual equation by equation form, but you will note that the coefficient numbers are out-of-sequence.

 

Full Program


cal 1935
open data grunfeld.wks
data(org=obs,format=wks) 1935:1 1954:1 ige fge cge iwest fwest cwest
*
* Define equations
*
equation  geeq  ige
# constant  fge   cge
equation  westeq  iwest
# constant  fwest cwest
*
* Estimate by OLS
*
linreg(equation=geeq)  ige
linreg(equation=westeq)  iwest
*
* Now by SUR
*
sur(vcv)   2
# geeq
# westeq
*
* Same thing defining a MODEL
*
group grunfeld geeq westeq
sur(model=grunfeld)
*
* Test that the "F" coefficients are identical
*
restrict(title="Test of equality of F coefficients") 1
# 2 5
# 1 -1 0
*
* Forcing the 2nd and 3rd coefficients to be equal across equations.
*
sur(model=grunfeld,equate=||2,3||)
 

Output

 

Linear Regression - Estimation by Least Squares

Dependent Variable IGE

Annual Data From 1935:01 To 1954:01

Usable Observations                        20

Degrees of Freedom                         17

Centered R^2                        0.7053067

R-Bar^2                             0.6706369

Uncentered R^2                      0.9479894

Mean of Dependent Variable       102.29000000

Std Error of Dependent Variable   48.58449937

Standard Error of Estimate        27.88272475

Sum of Squared Residuals         13216.587770

Regression F(2,17)                    20.3435

Significance Level of F             0.0000309

Log Likelihood                       -93.3137

Durbin-Watson Statistic                1.0721

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                      -9.95630645  31.37424914     -0.31734  0.75484994

2.  FGE                            0.02655119   0.01556610      1.70571  0.10626510

3.  CGE                            0.15169387   0.02570408      5.90155  0.00001742

 

 

Linear Regression - Estimation by Least Squares

Dependent Variable IWEST

Annual Data From 1935:01 To 1954:01

Usable Observations                        20

Degrees of Freedom                         17

Centered R^2                        0.7444461

R-Bar^2                             0.7143810

Uncentered R^2                      0.9594526

Mean of Dependent Variable       42.891500000

Std Error of Dependent Variable  19.110188596

Standard Error of Estimate       10.213122845

Sum of Squared Residuals         1773.2339304

Regression F(2,17)                    24.7611

Significance Level of F             0.0000092

Log Likelihood                       -73.2271

Durbin-Watson Statistic                1.4130

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -0.509390184  8.015288941     -0.06355  0.95006800

2.  FWEST                         0.052894126  0.015706501      3.36766  0.00365476

3.  CWEST                         0.092406492  0.056098974      1.64720  0.11787433

 

 

Linear Systems - Estimation by Seemingly Unrelated Regressions

Iterations Taken                            2

Annual Data From 1935:01 To 1954:01

Usable Observations                        20

Log Likelihood                      -158.3196

 

Dependent Variable IGE

Mean of Dependent Variable       102.29000000

Std Error of Dependent Variable   48.58449937

Standard Error of Estimate        26.25678563

Sum of Squared Residuals         13788.375833

Durbin-Watson Statistic                0.9856

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -27.71931712  27.03282800     -1.02539  0.30517701

2.  FGE                            0.03831021   0.01329011      2.88261  0.00394396

3.  CGE                            0.13903627   0.02303559      6.03572  0.00000000

 

Dependent Variable IWEST

Mean of Dependent Variable       42.891500000

Std Error of Dependent Variable  19.110188596

Standard Error of Estimate        9.490260477

Sum of Squared Residuals         1801.3008785

Durbin-Watson Statistic                1.3647

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

4.  Constant                     -1.251988228  6.956346688     -0.17998  0.85716997

5.  FWEST                         0.057629796  0.013411012      4.29720  0.00001730

6.  CWEST                         0.063978067  0.048900998      1.30832  0.19076540

 

 

Covariance\Correlation Matrix of Coefficients

           Constant       FGE          CGE        Constant      FWEST        CWEST

Constant  730.7737897  -0.91648771  -0.23484453   0.67515453  -0.62391596   0.29692502

FGE        -0.3292660    0.0001766  -0.11121555  -0.56990847   0.67323119  -0.49976868

CGE        -0.1462417   -0.0000340    0.0005306  -0.24725669  -0.05461557   0.52805012

Constant  126.9626218   -0.0526884   -0.0396213   48.3907592  -0.85776714   0.33400076

FWEST      -0.2261930    0.0001200   -0.0000169   -0.0800225    0.0001799  -0.72367292

CWEST       0.3925148   -0.0003248    0.0005948    0.1136178   -0.0004746    0.0023913

 

 

Covariance\Correlation Matrix of Residuals

          IGE         IWEST

IGE   689.41879166   0.76504294

IWEST 190.63625609  90.06504392

 

 

Linear Systems - Estimation by Seemingly Unrelated Regressions

Iterations Taken                            2

Annual Data From 1935:01 To 1954:01

Usable Observations                        20

Log Likelihood                      -158.3196

 

Dependent Variable IGE

Mean of Dependent Variable       102.29000000

Std Error of Dependent Variable   48.58449937

Standard Error of Estimate        26.25678563

Sum of Squared Residuals         13788.375833

Durbin-Watson Statistic                0.9856

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -27.71931712  27.03282800     -1.02539  0.30517701

2.  FGE                            0.03831021   0.01329011      2.88261  0.00394396

3.  CGE                            0.13903627   0.02303559      6.03572  0.00000000

 

Dependent Variable IWEST

Mean of Dependent Variable       42.891500000

Std Error of Dependent Variable  19.110188596

Standard Error of Estimate        9.490260477

Sum of Squared Residuals         1801.3008785

Durbin-Watson Statistic                1.3647

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

4.  Constant                     -1.251988228  6.956346688     -0.17998  0.85716997

5.  FWEST                         0.057629796  0.013411012      4.29720  0.00001730

6.  CWEST                         0.063978067  0.048900998      1.30832  0.19076540

 

 

Covariance\Correlation Matrix of Residuals

          IGE         IWEST

IGE   689.41879166   0.76504294

IWEST 190.63625609  90.06504392

 

 

Test of equality of F coefficients

Chi-Squared(1)=      3.203911 with Significance Level 0.07346239

 

 

Linear Systems - Estimation by Seemingly Unrelated Regressions

Iterations Taken                            2

Annual Data From 1935:01 To 1954:01

Usable Observations                        20

Log Likelihood                      -160.6472

 

Dependent Variable IGE

Mean of Dependent Variable       102.29000000

Std Error of Dependent Variable   48.58449937

Standard Error of Estimate        26.03373641

Sum of Squared Residuals         13555.108631

Durbin-Watson Statistic                1.0062

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

3.  Constant                     -22.47292135  18.95280698     -1.18573  0.23572874

1.  FGE                            0.03521313   0.00808344      4.35621  0.00001323

2.  CGE                            0.14095059   0.02296517      6.13758  0.00000000

 

Dependent Variable IWEST

Mean of Dependent Variable       42.891500000

Std Error of Dependent Variable  19.110188596

Standard Error of Estimate        9.761225716

Sum of Squared Residuals         1905.6305498

Durbin-Watson Statistic                1.4008

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

4.  Constant                     7.1956492033 6.1594381566      1.16823  0.24271343

1.  FWEST                        0.0352131317 0.0080834405      4.35621  0.00001323

2.  CWEST                        0.1409505908 0.0229651663      6.13758  0.00000000

 

 

Covariance\Correlation Matrix of Residuals

          IGE         IWEST

IGE   677.75543154   0.70480098

IWEST 179.10485379  95.28152749

 

 


Copyright © 2025 Thomas A. Doan