
Chapter 5

Multivariate GARCH: Basics

It didn’t take long for GARCH models to make the jump from univariate to mul-

tivariate settings. In financial econometrics, it’s rare to have only one asset of

interest—if you’re analyzing bonds, there are different maturities, if exchange

rates, multiple currencies, and, of course, there are thousands of equities. Not

only is the volatility for each likely to be described fairly well by a GARCH

process, but within a class of assets, the movements are likely to be highly

correlated. As a result, there would be expected to be substantial gains in (sta-

tistical) efficiency in modeling them jointly. In addition, having a time-varying

estimate of the covariances would permit calculation of rolling optimal portfolio

allocations.

There are many more variants of multivariate GARCH models than univariate.

In some cases, this is driven by the need to answer particular questions. Many

of the differences, though, are due to the difficulties in estimating the more

general forms of multivariate GARCH models. You might notice that we really

didn’t say much about the technical options, such as initial guess values and

algorithms, for estimating univariate models in Chapters 3 and 4. This is be-

cause the univariate log likelihood is quite well-behaved—even if you estimate

a model with a data set which isn’t well-described by a GARCH, you will gen-

erally get converged estimates without much fuss. That is far from true for

multivariate GARCH models, so we will have to be much more careful, both in

choice of a specific form for the model, and also in choosing the algorithm to

use.

5.1 Preliminaries

Before you do anything else, do yourself a favor and graph the data. Make sure

that it at least looks like it could be generated by a GARCH process. The data

set we will work with here is the daily exchange rate data from section 3.11 of

Enders (2010). This has nine years of daily observations on five exchange rates

vs the US dollar, though we will work only with three of them: the Euro, pound

and Swiss franc.1 We read the data and convert the three of interest to returns

with:

1
The two we are omitting are the Australian and Canadian dollars.
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Figure 5.1: Exchange Rate Returns

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

This scales by 100 as described on page 5, which, in practice, is even more

important for multivariate models because of the greater numerical difficulties

they create. The following graphs the three return series, producing Figure

5.1.2

spgraph(vfields=3,ylabels=||"Euro","Pound","Swiss Franc"||)

dofor r = reuro rpound rsw

graph(picture="*.#")

# r

end dofor

spgraph(done)

What could you see at this point which might raise a flag that the GARCH

model might be a mistake (at least across the sample in question)? A common

error is including a part of the sample where a price was regulated, so the

returns are zero for long stretches with occasional one-period spikes. This may

be interesting from an economic standpoint, but you won’t be able to include

that (at least as an endogenous variable) in any sensible GARCH model. Data

2
In this chapter’s Tips and Tricks (Section 5.8.1), we’ll see how to convert this into a better-

looking graph.
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Table 5.1: Lag Length Selection for Exchange Rates

VAR Lag Selection

Lags SBC/BIC

0 7243.00043∗

1 7272.86486
2 7319.51443
3 7373.53640
4 7422.21572
5 7465.46548

which have visible variation only at one or two episodes will only fit a non-

stationary GARCH model, which may be quite hard to interpret.

As with the univariate case, we need to decide upon a model for the mean. If

Ωt−1 denotes the information available at time t − 1, then a general structure

for (the variance model in) a multivariate GARCH model is:

E (ut|Ωt−1) = 0

E
(

utu
′

t|Ωt−1

)

≡ Ht = f(Ht−1,Ht−2, . . . ,ut−1,ut−2, . . .)

Before we even concern ourselves with the form of f , note that the first condi-

tion means that the series is (at a minimum) a vector white noise—the residu-

als not only have to be serially uncorrelated individually, but they need to have

zero correlation with the lags of the other components. An obvious model to

entertain for eliminating joint autocorrelation is a low-order VAR. The vector

analogue of the @ARAutoLags procedure from Section 3.3 is @VARLagSelect:

@varlagselect(crit=bic,lags=5)

# reuro rpound rsw

The minimum BIC lag length (Table 5.1) is 0, which is what is used in the

Enders book. Hannan-Quinn (option CRIT=HQ) slightly favors 1 over 0, and

Akaike (option CRIT=AIC) favors five and prefers any positive number of lags

over 0.

As with @ARAutoLags, @VARLagSelect assumes homoscedastic residuals and

so can’t offer more than a rough guide to choice of lag length. And as before,

we’re better off starting small and testing the results for residual correlation.

Thus, we will use the intercepts only as the mean model, which is the default

for the GARCH instruction. However, for demonstration purposes, we will use

the MODEL option on GARCH, which is what you would use for any more general

type of mean model. The simplest way to define the MODEL when we have

the same right-side variables in each equation is to use the SYSTEM definition

instructions:
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system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

We left an empty LAGS instruction to show where you would put in VAR lags if

you wanted or needed them.

We can do a preliminary test for multivariate ARCH effects using the procedure

@MVARCHTest. Since this is mainly designed for diagnostics, it assumes that

the input series are already (roughly) mean zero, that is, it doesn’t subtract

means itself. We can do the least squares estimates and test for ARCH with

estimate(resids=resids)

@mvarchtest

# resids

which produces the (unsurprising) result that lack of ARCH is overwhelming

rejected:

Test for Multivariate ARCH

Statistic Degrees Signif

370.11 36 0.00000

@MVARCHTest (from Hacker (2005)) works by running a multivariate regres-

sion of all unique combinations of uitujt on constant and all unique combina-

tions of ui,t−kuj,t−k for each k up to the number of lags tested (which is 1 by

default, and controlled by the LAGS option) and testing the significance of the

lag coefficients. Thus, the null is that the u series has a fixed covariance ma-

trix against the alternative of some 2nd order dependence. utu
′

t is symmetric,

so there are n(n + 1)/2 unique elements in it, thus 6 for the case in question

with n = 3. The degrees of freedom is the square of that times the number of

lags, which can get quite large quite quickly. For diagnostic purposes, we will

need to be a bit careful about relying too much on it alone, because some of the

tested coefficients will be more likely to be informative than others—only 6 out

of 36 will be “own” effects, testing second order correlation of uitujt with its own

lag rather than a different i, j combination.

Again, note that (as with the univariate test) rejecting the null does not mean

that a GARCH model is correct, only that a fixed covariance isn’t. Even a change

in the correlation structure without any overall changes in the variances can

trigger a significant test.

5.2 GARCH Instruction

You use the same GARCH instruction for multivariate models as you do for

univariate; however, there are a different set of options to deal with choice
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of model, and the output information for variances and residuals is different.

For the univariate model, we used the %RESIDS series for the residuals and the

HSERIES option to get the estimated variances. Neither of those will be suffi-

cient (and neither even works) with a multivariate model—the residuals will

be an n vector at each point in time, and the variances will be a complete sym-

metric n×n matrix in order to capture the correlations as well as the variances.

The options for getting the multivariate information are now RVECTORS for the

residuals and HMATRICES for the covariance matrices. RVECTORS returns a

SERIES of VECTORS and HMATRICES a SERIES of SYMMETRIC matrices. For in-

stance, if we use the option HMATRICES=HH, then in a SET instruction or other

formula, HH(T) is an n × n symmetric matrix: if we need the 1,1 element of

that at time T, we use the double-subscripted expression HH(T)(1,1).

As we will see, there are many ways to set up a multivariate GARCH model.

The main option for choosing the type is MV=model type . For illustration,

we’ll use MV=DIAG, which isn’t really a useful model in practice. This ignores

the covariances and models the variances separately using univariate meth-

ods. The point estimates should be almost identical to what you would get by

estimating separate univariate models—the parameters are estimated jointly

so none are considered converged until all of them are, which leads to very

slight differences from one-at-a-time estimation. Assuming Normal residuals,

the diagonal model can be written:

hii,t = ci + aiu
2

i,t + bihii,t−1

hij,t = 0 if i 6= j

logLt = const.−
1

2
log |Ht| −

1

2
u
′

tH
−1

t ut

Because of the diagonality of H, the log likelihood is just the sum of the log

likelihoods across i. The instruction for estimating this (saving the residuals

and H matrices) is:

garch(model=mvmean,mv=diag,p=1,q=1,rvectors=rd,hmatrices=hh)

You use the MODEL option to input the mean model that we defined earlier.

Note that the process of estimating the model also sets the coefficients of this

model to the GARCH estimates of the mean coefficients, so if we followed this by

a FORECAST, it would use the GARCH estimates rather than the OLS estimates

that we calculated first. Note that, because means-only is the default, we could

also have estimated this with:

garch(mv=diag,p=1,q=1,rvectors=rd,hmatrices=hh) / reuro rpound rsw

This is the reason the range parameters come first on GARCH: to allow for the

open-ended list of dependent variables in this form. The results are in Table

5.2.
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Table 5.2: MV-GARCH Diagonal Model

MV-GARCH, Diagonal - Estimation by BFGS

Convergence in 46 Iterations. Final criterion was 0.0000071 <= 0.0000100

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -6015.5736

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0240 0.0114 2.0974 0.0360

2. Constant 0.0114 0.0107 1.0680 0.2855

3. Constant 0.0195 0.0130 1.5033 0.1327

4. C(1) 0.0006 0.0006 1.0818 0.2793

5. C(2) 0.0035 0.0014 2.5913 0.0096

6. C(3) 0.0010 0.0008 1.2795 0.2007

7. A(1) 0.0325 0.0049 6.6572 0.0000

8. A(2) 0.0483 0.0077 6.2504 0.0000

9. A(3) 0.0276 0.0045 6.0641 0.0000

10. B(1) 0.9672 0.0052 187.0732 0.0000

11. B(2) 0.9406 0.0106 88.8573 0.0000

12. B(3) 0.9713 0.0050 195.3141 0.0000

First, note that the model being estimated is in the first line of the output—

here “MV-GARCH Diagonal”. Rather than just C, A and B, the GARCH coef-

ficients are C(1), C(2), C(3), and similarly for A and B. The C, A and B pre-

fixes will be used for the constant, lagged squared residual and lagged variance

terms in all multivariate GARCH models, but the subscripting will change de-

pending upon the form of the multivariate model. The mean model coefficients

will always be at the top, grouped by equation.

5.3 Diagnostics

The diagnostics for the univariate GARCH models were based upon the stan-

dardized residuals, which should be (if the model is correct) serially uncorre-

lated and homoscedastic. The residuals from the multivariate model should

also be serially uncorrelated, and show no remaining ARCH effects. However,

there are two possible approaches to testing these: using univariate tests or

multivariate tests. The latter is what is actually implied by the assumptions

of the model, but the multivariate tests are both more complicated and not as

precisely defined.

The univariate tests would just apply the same pair of tests (for serial corre-

lation on standardized residuals and their squares) to each of the variables. A

quick, but not very pretty, set of tests can be done with:
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do i=1,%nvar

set ustd = rd(t)(i)/sqrt(hh(t)(i,i))

set ustdsq = ustdˆ2

@regcorrs(number=10,nocrits,nograph,qstat) ustd

compute q1=%cdstat,q1signif=%signif

@regcorrs(number=10,nocrits,nograph,qstat,dfc=2) ustdsq

compute q2=%cdstat,q2signif=%signif

disp q1 q1signif q2 q2signif

end do i

%NVAR is defined by GARCH as the number of dependent variables, so this will

work for any size GARCH model as long as you use RD and HH for the RVECTORS

and HMATRICES options. The first SET instruction shows how to divide compo-

nent I of the residuals by its corresponding (time-varying) standard deviation.

In Tips and Tricks (Section 5.8.2), we’ll show how to convert this to a nicer

table. What this simple version produces is:

8.73373 0.55755 16.30334 0.03824

13.55638 0.19420 9.68835 0.28758

4.44765 0.92490 9.14915 0.32987

The only one of the six numbers that is significant at conventional levels is the

one on the squares for the first variable (the Euro, row 1, third number is the

statistic and fourth is the significance level) but with over 2000 data points,

that’s unlikely to be anything fixable with any simple change to the model

(Appendix C).

These, however, are just univariate diagnostics, and we have a model which

is supposed to produce vector white noise. The problem in moving to multi-

variate diagnostics is dealing with the time-varying covariance matrices. The

univariate standardized residuals give three series which are (approximately)

each variance one, but they ignore the fact that the correlations vary from time

period to time period. Instead, we need a matrix-standardized set of residuals,

which transform to (approximately) the identity matrix. However, that stan-

dardization isn’t unique, as if we take any sequence of matrices Gt such that

G
′

tGt = H
−1

t , then E
(

Gtutu
′

tG
′

t

)

= I. Once we have two or more variables,

there are an infinite number of such “square root” matrices (at each t) and each

sequence of Gtut will produce a different test statistic for correlation—whether

these are likely to be qualitatively different is unclear.

The simplest such G to compute is the inverse of the Cholesky factor of H. How-

ever, a better choice under the circumstances is to use the one derived from an

eigen decomposition of H, which will be independent of the order in which you

list the dependent variables. Unlike the univariate tests, where we could gen-

erate the standardized residuals one-at-a-time, the multivariate tests require

that we have the full set of generated residuals simultaneously. They also need

to be organized differently: as a VECTOR of SERIES rather than a SERIES like

RD. You generate these with the STDRESIDS option on GARCH. The choice of



Multivariate GARCH: Basics 89

G is controlled by the FACTORBY option, which is either FACTORBY=CHOLESKY

(the default) or FACTORBY=EIGEN.

Adding the options to do the eigen standardization to the GARCH instruction

gives us:

garch(model=mvmean,mv=diag,p=1,q=1,$

rvectors=rd,hmatrices=hh,stdresids=rstd,factorby=eigen)

The procedures designed for the diagnostics test on this are @MVQSTAT and

@MVARCHTest that we’ve already used. We compute a 10-lag Q-statistic with:

@mvqstat(lags=10)

# rstd

which gives us

Multivariate Q(10)= 195.71117

Significance Level as Chi-Squared(90)= 8.24580e-010

Note that if we were using a VAR with lags, we would need to include the DFC

(Degrees for Freedom Correction) option on @MVQSTAT with correction n2 × L
where L is the number of VAR lags.

The degrees of freedom on the test will be n2 times the number of tested lags

(here 10). The Q test looks for correlation between ui,t and uj,t−k for all i, j
combinations and for each tested lag k.

Despite the fact that the individual Q statistics were insignificant, this is sig-

nificant beyond any doubt. So what happened? The problem isn’t that the

residuals are actually serially correlated, it’s that the variance model is so com-

pletely wrong that the standardization process produces nonsense. MV=DIAG

assumes the off-diagonal elements of Ht are zero, and that shows up in the

HH matrices. The sample residuals, however, are quite strongly contemporane-

ously correlated, so the standardization is simply wrong.

The test for ARCH (here with two lags) confirms the fact that the model esti-

mated is inadequate:

@mvarchtest(lags=2)

# rstd

gives us

Test for Multivariate ARCH

Statistic Degrees Signif

465.60 72 0.00000

It’s important to recognize the difference in reading the diagnostics: in the uni-

variate case, an incorrect GARCH model will rarely produce a highly significant

finding of serial correlation in the mean when the mean model is, in fact, ade-

quate, so if we get the result that the Q is significant, the fix will generally be to
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change the mean model. The multivariate statistics are much more dependent

upon a good variance model, even for testing the adequacy of the mean, be-

cause the standardization depends not just on scale (which the diagonal model

gets right) but on “shape”.

5.4 VECH, DVECH and BEKK Models

The first important paper to use a multivariate GARCH model was Bollerslev,

Engle, and Wooldridge (1988). This actually did a multivariate GARCH-M, but

for now we’ll just discuss the variance model in isolation. The first form that

they introduce for that is what is now known as the VECH or Full-VECH, after

the “vech” operator which takes an n × n symmetric matrix and converts it to

an n(n + 1)/2 vector by eliminating the duplicated entries. A VECH 1,1 model

is written:

vech(Ht) = C+A vech(ut−1u
′

t−1) +B vech(Ht−1) (5.1)

In this form, C is a vector which should be the vech of a positive semi-definite

matrix. A and B are full n(n + 1)/2 × n(n + 1)/2 matrices. Bollerslev, Engle

and Wooldridge didn’t estimate this model, and it is rarely used. One reason is

fairly obvious—the number of free parameters goes up very fast with n. Even

for our example with n = 3, we have 78 in the variance model (6 in C, 36 = 62 for

each of A and B). That’s a very large number of free parameters for non-linear

estimation. Also, this has an unrestricted coefficient on each of the elements

of Ht−1 for explaining each element of Ht. If the shocks are highly correlated

(which is what we are expecting), then the variances and covariances will tend

to move together. Thus (with our n = 3 data set), each element of Ht has free

coefficients on six different, and relatively similar, pieces of information. So not

only is it a high-dimension set of non-linear parameters, but many of them are

poorly determined from the data.

The VECH model is estimated with RATS by using the MV=VECH option. How-

ever, you have very little chance of getting a model with anything more than

two variables to estimate properly without a great deal of experimentation with

guess values.

However, even if the unrestricted (5.1) isn’t very useful for estimation, it is

(with restrictions) useful for forecasting and similar calculations. If we can

cast a GARCH recursion in this form, then, just as with the univariate model,

the forecasts can be generated as

vech(Ĥt+1) = C+A vech(utu
′

t) +B vech(Ht)

vech(Ĥt+k) = C+ (A+B) vech(Ĥt+k−1)
(5.2)

that is, the first period out-of-sample forecast uses the computed residuals and

variance, while all steps after that are a matrix difference equation in the fore-

cast variance/covariance matrix.
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Two important variance models are restrictions on the VECH: the diagonal or

DVECH model and the BEKK. Several others (CC and DCC) are not. In this

section, we will deal with the restricted VECH forms.

5.4.1 Diagonal VECH (Standard) Model

The model estimated by Bollerslev, Engle and Wooldridge was the diagonal

VECH or DVECH model, which, if you don’t state otherwise, is the standard for

a multivariate GARCH, and is the default for the RATS GARCH instruction. This

assumes that A and B in (5.1) are diagonal. Another (more compact) way to

write this is

Ht = C+A ◦
(

ut−1u
′

t−1

)

+B ◦Ht−1 (5.3)

where ◦ represents the Hadamard or elementwise product,3 and C, A and B

are now n× n symmetric matrices. Written out, this means

hij,t = cij + aijui,t−1uj,t−1 + bijhij,t−1 (5.4)

This greatly decreases the number of free parameters: we still have six in C,

but only six each in A and B.

Despite being a much smaller model, there are still some numerical problems

that must be overcome in estimating this. (5.4) describes “independent” recur-

sions on each of the components of the covariance matrix. For this to produce a

computable log likelihood, each Ht matrix must be positive-definite, but there’s

nothing in the structure of (5.4) that will enforce that. If an off-diagonal re-

cursion has a higher persistence than its corresponding diagonal elements, it’s

possible for the recursion to stray into non-positive-definite territory if the cor-

relations among the residuals are high. The parameters will never actually go

into an area where the log likelihood isn’t computable, but if the estimation

process ever gets close to a singular H at any data point, then it may be hard to

move away from that test set of parameters, because the predictions for the log

likelihood from the gradient can be quite inaccurate due to the function being

nearly non-differentiable.

This is a problem that’s specific to the two derivative-based optimization al-

gorithms: BFGS and BHHH. BHHH is almost never a good choice as a basic

estimation algorithm for GARCH models—its prediction of the curvature of the

log likelihood is likely to be good only when you’re fairly close to the optimum,

and getting to the optimum is the challenge. BFGS is generally more success-

ful, but it does have the problem that it estimates the curvature (and thus the

covariance matrix of the parameter estimates) using an update method which

will give a different answer for different initial guess values. In the GARCH lit-

erature, it’s not uncommon for standard errors to be reported as generated by

either BHHH, or corrected for possible misspecification (in RATS done with the

3
C = A ◦B⇒ cij = aijbij

If you need a Hadamard product in RATS as part of a calculation, you can do it with A.*B
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ROBUSTERRORS option). In practice, the latter is more conservative and should

be preferred.

The recommendation that we make for estimating multivariate GARCH models

is to use a combination of preliminary “simplex” iterations, followed by BFGS

for doing the final estimates. The problem with starting off with BFGS from the

initial guesses is that BFGS also has some difficulty with the function curvature

at the guess values since it builds up its estimate of the inverse Hessian indi-

rectly by seeing how the gradient changes from iteration to iteration. A poor

estimate of the curvature can lead to some wildly inaccurate moves in the early

iterations. Because the log likelihood can have a very odd shape, it’s possible

to make a big move in the wrong direction and then get stuck on the wrong

“hill”—one that doesn’t include the global optimum.

We generally recommend somewhere between 5 and 20 simplex “iterations”.4

We frequently see people who think that if 20 simplex iterations is good, then

200 must be better. That’s rarely the case. The simplex method accomplishes

quite a bit less in an “iteration” worth of work than one of the climbing algo-

rithms, which is intentional—it relies upon much weaker assumptions about

the behavior of the function being optimized and so doesn’t (and can’t) make

very quick moves up the “hill”. Simplex should eventually get to the same op-

timum, but it can take thousands of iterations to do so with a parameter set of

this size—20 vs 200 probably will make little difference. What the first 20 iter-

ations do is to move the parameter set (cautiously) off the guess values in what

is likely to be the correct direction. From there, the more standard algorithm

can take over.

The estimation code is in Example 5.2. This uses the same data and mean

model as Example 5.1. The instruction for estimating the DVECH model using

the recommended options is

garch(model=mvmean,rvectors=rd,hmatrices=hh,robusterrors,$

pmethod=simplex,piters=20,method=bfgs,iters=500)

which produces Table 5.3. The MV option isn’t necessary, since this model is the

default, but it is called MV=STANDARD. This model nests the MV=DIAG model

from Table 5.2 (the diagonal model has all the off-diagonal coefficients zeroed),

so the log likelihood must be higher here, but being higher by over 3000 is quite

a difference—the diagonal model is obviously thoroughly misspecified.

The A, B and C coefficients are labeled as shown in (5.4) and they are in the

rowwise order of the lower triangle that is used for SYMMETRIC matrices in

4
Iterations is in quotes because, in RATS, a simplex iteration is counted as a set of calcu-

lations with roughly the same number of function evaluations as an iteration in one of the

derivative-based algorithms. Simplex is very different from “climbing” algorithms, as, rather

than explicitly looking for directions of increase, it spends most of its effort eliminating direc-

tions of decrease.
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Table 5.3: Multivariate GARCH-Diagonal VECH

MV-GARCH - Estimation by BFGS

Convergence in 194 Iterations. Final criterion was 0.0000000 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -2758.8148

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0247 0.0103 2.4017 0.0163

2. Constant 0.0149 0.0100 1.4936 0.1353

3. Constant 0.0199 0.0123 1.6154 0.1062

4. C(1,1) 0.0033 0.0017 1.9282 0.0538

5. C(2,1) 0.0026 0.0017 1.5065 0.1319

6. C(2,2) 0.0033 0.0022 1.4992 0.1338

7. C(3,1) 0.0035 0.0018 1.9824 0.0474

8. C(3,2) 0.0022 0.0012 1.8255 0.0679

9. C(3,3) 0.0047 0.0023 2.0432 0.0410

10. A(1,1) 0.0413 0.0104 3.9534 0.0001

11. A(2,1) 0.0332 0.0092 3.5961 0.0003

12. A(2,2) 0.0389 0.0091 4.2776 0.0000

13. A(3,1) 0.0387 0.0099 3.9140 0.0001

14. A(3,2) 0.0308 0.0064 4.8414 0.0000

15. A(3,3) 0.0390 0.0102 3.8068 0.0001

16. B(1,1) 0.9508 0.0147 64.7672 0.0000

17. B(2,1) 0.9565 0.0165 57.9902 0.0000

18. B(2,2) 0.9513 0.0156 60.9383 0.0000

19. B(3,1) 0.9530 0.0141 67.6920 0.0000

20. B(3,2) 0.9609 0.0108 88.7553 0.0000

21. B(3,3) 0.9514 0.0145 65.6489 0.0000
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Figure 5.2: Variances (Diagonal) and Correlations (Off-Diagonal)

RATS. If we want to extract the A, B and C matrices from (5.3), we can do it

with

dec vect meanparms(%nregmean)

dec symm cdvech(%nvar,%nvar) advech(%nvar,%nvar) bdvech(%nvar,%nvar)

nonlin(parmset=dvech) meanparms cdvech advech bdvech

compute %parmspoke(dvech,%beta)

which is an extension to a (multivariate) DVECH model of the use of the

PARMSET and %PARMSPOKE function. If we extract these and add them, we’ll

get the persistence on an element by element basis:

0.99210

0.98966 0.99014

0.99169 0.99172 0.99043

Note that these are all very close to 1, and the 3,2 element is, in fact, larger

than the 2,2 and 3,3 elements, which is the type of behavior that could cause

problems with the positive-definite boundary.

We can extract the time-varying correlations and the time-varying variances

using the following, which organizes them into a SYMMETRIC of SERIES, with

variances on the diagonals and correlations on the off-diagonals. The simplest

way to get the correlations is to use %CVTOCORR(C), which returns the correla-

tion matrix formed from the covariance matrix C, as we can just pull elements

out of that. Note that this works for any type of multivariate GARCH model.
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dec symm[series] hhx(%nvar,%nvar)

do i=1,%nvar

set hhx(i,i) = hh(t)(i,i)

do j=1,i-1

set hhx(i,j) = %cvtocorr(hh(t))(i,j)

end do j

end do i

We can use some of the ideas from Section 5.8.1 to present this information in

an interesting way (Figure 5.2) with:

table / hhx(2,1) hhx(3,1) hhx(3,2)

compute corrmin=%minimum

table / hhx(1,1) hhx(2,2) hhx(3,3)

compute varmax=%maximum

*

spgraph(vfields=%nvar,hfields=%nvar,$

xlabels=longlabel,ylabels=longlabel)

do i=1,%nvar

do j=1,%nvar

if i==j {

graph(row=i,col=i,maximum=varmax)

# hhx(i,i)

}

else {

graph(row=i,col=j,maximum=1.0,min=corrmin)

# hhx(i,j)

}

end do j

end do i

spgraph(done)

This puts the variances in the diagonal fields and the correlations in the off-

diagonals. To avoid a misleading impression, this forces all the correlations to

use the same range, For instance, without that, it wouldn’t be clear without a

careful look at the scale that the Swiss Franc-Euro correlation is so extremely

high across almost the entire range if its values (roughly .6 to 1) are spread

across the full box, and the UK correlations (roughly .1 to .9) are graphed in the

same sized box.
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5.4.2 BEKK Model

There are a few drawbacks to the DVECH model. First, as we described above, it

can have some numerical issues because the parameterization doesn’t enforce

positive-definiteness.5 Second, it doesn’t allow for certain types of more compli-

cated interactions among the variables; for instance, one interesting possibility

is that shocks in one market could have a “spillover” effect on another (Section

5.5). That’s precluded by the structure of the DVECH where the only thing that

determines the variance of one series is its own shocks.

To allow a greater range of interactions (though not as general as the VECH),

while also enforcing positive-definiteness by construction, Engle and Kroner

(1995) proposed what is now known as the BEKK model, after the four authors

of an earlier working paper. Note that this does not nest the DVECH, so even

though it has a few additional parameters, it doesn’t necessarily fit better.

For a 1,1 model, the BEKK recursion is

Ht = CC
′ +A

′
ut−1u

′

t−1A+B
′
Ht−1B (5.5)

where C is now a lower triangular matrix and A and B are general n×n matri-

ces. The last two terms could also have the transpose on the post-multiplying

matrix rather than the pre-multiplying one—we’re following the original Engle

and Kroner formula, which is the one most commonly used. By construction,

this is positive semi-definite regardless of the values of the parameters, and, in

practice, will maintain positive definiteness as long as the B or C is full rank.6

C has the same number of parameters as it does in the DVECH, just in a differ-

ent form. A and B now have n2 rather than n(n+ 1)/2 and so will always have

more free parameters than the corresponding matrices in the DVECH: with

n = 3, there are 9 for each rather than 6.

That this is a restricted version of the VECH form (5.1) is clear if you look at

the expansions of the matrix multiplications. In fact, if we write (5.1) in a

“vec” form (which includes the full n × n matrix including duplicates, stacked

by columns), you get

vec(Ht) = vec(CC
′) +

(

A
′ ⊗A

′
)

vec(ut−1u
′

t−1) +
(

B
′ ⊗B

′
)

vec(Ht−1) (5.6)

which is easier to analyze for most purposes than the equivalent VECH form.

That the BEKK can’t be a generalization of DVECH is clear from the fact that

A
′
ut−1u

′

t−1A is rank one and the analogous term in the DVECH will be full rank

for almost any set of parameters.

5
Again, sample estimates will always give positive-definite matrices for every entry because

the likelihood isn’t computable otherwise. However, not all sets of parameters will do that, and

the boundary between parameters that do and parameters that don’t can be very complicated.

6
The lagged u term is rank (at most) one, since it’s the outer product of the n vector A

′
ut−1

and so isn’t as critical for maintaining the full rank.
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Table 5.4: Multivariate GARCH-BEKK Estimates

MV-GARCH, BEKK - Estimation by BFGS

Convergence in 172 Iterations. Final criterion was 0.0000000 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -2727.5812

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0286 0.0115 2.5000 0.0124

2. Constant 0.0174 0.0109 1.5937 0.1110

3. Constant 0.0217 0.0129 1.6845 0.0921

4. C(1,1) 0.0391 0.0094 4.1639 0.0000

5. C(2,1) 0.0505 0.0105 4.8315 0.0000

6. C(2,2) -0.0055 0.0089 -0.6103 0.5417

7. C(3,1) 0.0230 0.0114 2.0098 0.0445

8. C(3,2) -0.0277 0.0086 -3.2393 0.0012

9. C(3,3) 0.0007 0.0064 0.1144 0.9089

10. A(1,1) 0.2369 0.0621 3.8180 0.0001

11. A(1,2) 0.1308 0.0660 1.9837 0.0473

12. A(1,3) -0.0862 0.0880 -0.9795 0.3273

13. A(2,1) 0.0491 0.0289 1.7015 0.0888

14. A(2,2) 0.1920 0.0318 6.0459 0.0000

15. A(2,3) 0.0285 0.0287 0.9941 0.3202

16. A(3,1) -0.1201 0.0555 -2.1641 0.0305

17. A(3,2) -0.1323 0.0554 -2.3898 0.0169

18. A(3,3) 0.1824 0.0890 2.0499 0.0404

19. B(1,1) 0.9582 0.0161 59.4924 0.0000

20. B(1,2) -0.0254 0.0187 -1.3555 0.1753

21. B(1,3) 0.0137 0.0268 0.5116 0.6089

22. B(2,1) -0.0208 0.0051 -4.0500 0.0001

23. B(2,2) 0.9707 0.0063 154.5004 0.0000

24. B(2,3) -0.0091 0.0078 -1.1661 0.2436

25. B(3,1) 0.0402 0.0161 2.4943 0.0126

26. B(3,2) 0.0320 0.0191 1.6765 0.0936

27. B(3,3) 0.9839 0.0288 34.1251 0.0000

To estimate, use the GARCH instruction with the option MV=BEKK. This is from

Example 5.3, producing Table 5.4.

garch(model=mvmean,mv=bekk,robusterrors,pmethod=simplex,piters=20,$

method=bfgs,iters=500,rvectors=rd,hmatrices=hh,$

stdresids=rstd,factorby=eigen)

The log likelihood is quite a bit higher than in Table 5.3. The models don’t nest

so we can’t do a formal likelihood ratio test, but the difference is large enough

that the BEKK model would be preferred even for a stringent information cri-

terion like BIC.

We often get questions about the number of negative parameters in the typical

BEKK output. One thing to note is that the BEKK model isn’t global identified—



Multivariate GARCH: Basics 98

you get exactly the same fit if you change the sign of the entire A or B matrix,

or even any column of C. However, the guess values used by GARCH will steer

it in the direction of positive “own” contributions, so it would be very rare that

you get the parameters with the opposite from the expected set of signs.

If you first look at the C coefficients, you’ll note that C(2,2) is (slightly) neg-

ative and C(3,3) is barely positive. Because this is a factor of the variance

intercept (rather than the variance intercept itself) the coefficients other than

the 1,1 don’t have simple interpretations. However, taken as a whole, these

mean that the variance intercept matrix is close to being rank two.

It’s easier to interpret the values in the A matrix. A
′
ut−1 is an n vector, call

it vt−1. The contribution to the variance at t is vt−1v
′

t−1, which means that the

squares of the elements of v will be the contributions to the variances. To have

“spillover” effects, so that shocks in uj directly affect the variance of i, v will

have to be a linear combination of the different components of u. Negative

coefficients in the off-diagonals of A′ mean that the variance is affected more

when the shocks move in opposite directions than when they move in the same

direction, which probably isn’t unreasonable in many situations. Here, we see

that the most statistically significant spillovers are from 3 (Swiss Franc) to the

other two (A(3,1) and A(3,2) coefficients) and these do have negative signs.

Another common question (which doesn’t apply here) is how it’s possible for the

off-diagonals in the A and B matrices to be larger than the diagonals, since one

would expect that the “own” effect would be dominant. However, the values of

the coefficients are sensitive to the scales of the variables, since nothing in the

recursion is standardized to a common variance. If you multiply component i by

.01 relative to j, its residuals also go down by a factor of .01, so the coefficient aij
which applies ui to the variance of j has to go up by a factor of 100. Rescaling a

variable keeps the diagonals of A and B the same, but forces a change in scale

of the off-diagonals. Even without asymmetrical scalings, the tendency will

be for (relatively) higher variance series to have lower off-diagonal coefficients

than lower variance series.

You can convert the coded up BEKK coefficients to the equivalent VECH repre-

sentation with the procedure @MVGARCHtoVECH, here with

@MVGARCHToVECH(mv=bekk)

This creates the matrices %%VECH C, %%VECH A and %%VECH B. With n = 3, the

first will be a 6-vector, the others 6 × 6 matrices. We can take a closer look at

the implied A in the VECH representation with:

disp ##.### %%vech_a

which gives us
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0.056 0.023 0.002 -0.057 -0.012 0.014

0.031 0.052 0.009 -0.047 -0.030 0.016

0.017 0.050 0.037 -0.035 -0.051 0.018

-0.020 0.003 0.001 0.054 0.006 -0.022

-0.011 -0.013 0.005 0.035 0.031 -0.024

0.007 -0.005 0.001 -0.031 0.010 0.033

The “vech” operator is by the rows of the lower triangle, so the elements (in

each direction) are in the order (1,1),(2,1),(2,2), etc. The variances (and squared

residuals) are thus in positions 1, 3 and 6.

The BEKK estimates give rise to a stable recursion if the sum of the VECH A

and B matrices has eigenvalues less than one. Since the eigenvalues could be

complex, we can compute and display those with:

eigen(cvalues=cv) %%vech_a+%%vech_b

disp ##.### cv

and, as we can see, these are just barely on the stable side:

( 0.998,-0.000) ( 0.994, 0.003) ( 0.994,-0.003)

( 0.980,-0.015) ( 0.980, 0.015) ( 0.974, 0.000)

The multivariate diagnostics from Section 5.3 give us

Multivariate Q(10)= 109.59742

Significance Level as Chi-Squared(90)= 0.07849

Test for Multivariate ARCH

Statistic Degrees Signif

107.91 72 0.00394

We would like the test for residual ARCH to be a bit better than this, but, in

practice, with a data set this size (2300 observations), this isn’t unreasonable.

Some people recommend reporting BEKK estimates in the vech form with stan-

dard errors (which can be computed using the delta method from Appendix D).

This seems to be a step backwards, particularly with regards to the coefficients

for A where the vech form is a reduced form to the more structural BEKK. If you

are required to do this by a referee, you can use SUMMARIZE using instructions

like:

dec vect means(%nregmean)

dec packed cx(%nvar,%nvar)

dec rect ax(%nvar,%nvar) bx(%nvar,%nvar)

nonlin(parmset=garchparms) means cx ax bx

summarize(parmset=garchparms) bx(1,1)ˆ2

summarize(parmset=garchparms) bx(1,1)*bx(1,2)*2.0

summarize(parmset=garchparms) bx(1,2)ˆ2

The first four lines decompose the estimated parameters into the separate ma-

trices used by a BEKK model. The last three compute the standard errors for

the first three elements of the first row of the VECH B matrix. Calculating
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standard errors for the full matrix requires the following, which has quite a

bit of “bookkeeping” to deal with what’s basically four level subscripting, since

each direction in the matrix represents a flattening of a symmetric matrix:

compute ncomp=%nvar*(%nvar+1)/2

dec rect %%vech_bse(ncomp,ncomp)

do m=1,ncomp

do n=1,ncomp

compute i=%symmrow(m),j=%symmcol(m),$

k=%symmrow(n),l=%symmcol(n)

if k==l {

summarize(noprint,parmset=garchparms) bx(i,k)*bx(j,l)

compute %%vech_bse(m,n)=sqrt(%varlc)

}

else {

summarize(noprint,parmset=garchparms) $

bx(i,k)*bx(j,l)+bx(i,l)*bx(j,k)

compute %%vech_bse(m,n)=sqrt(%varlc)

}

end do n

end do m

The values and standard errors can be displayed in a matrix form (Table 5.5)

with7

report(action=define,title="VECH-B from BEKK")

do j=1,ncomp

report(atrow=1,atcol=j+1,align=center) $

%string(%symmrow(j))+","+%symmcol(j)

end do i

do i=1,ncomp

report(atrow=2*i,atcol=1) %string(%symmrow(i))+","+%symmcol(i)

do j=1,ncomp

report(atrow=2*i,atcol=j+1) %%vech_b(i,j)

report(atrow=2*i+1,atcol=j+1,special=parens) %%vech_bse(i,j)

end do j

end do i

report(action=format,atrow=2,picture="##.####",align=decimal)

report(action=show)

5.5 Spillover

“Spillover” in the context of multivariate GARCH models is a rather vaguely de-

fined term. In general, the term spillover in economics refers to an event pro-

ducing an effect elsewhere despite there being no obvious connection. However,

7
It’s not clear what this really adds.
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Table 5.5: VECH-B from BEKK

1,1 2,1 2,2 3,1 3,2 3,3

1,1 0.9180 −0.0398 0.0004 0.0773 −0.0017 0.0016
(0.0248) (0.0112) (0.0002) (0.0242) (0.0008) (0.0011)

2,1 −0.0245 0.9306 −0.0202 0.0298 0.0385 0.0013
(0.0141) (0.0142) (0.0056) (0.0129) (0.0124) (0.0010)

2,2 0.0007 −0.0496 0.9423 −0.0016 0.0624 0.0010
(0.0008) (0.0292) (0.0130) (0.0017) (0.0285) (0.0009)

3,1 0.0131 −0.0091 0.0002 0.9432 −0.0208 0.0397
(0.0212) (0.0070) (0.0002) (0.0148) (0.0061) (0.0137)

3,2 −0.0003 0.0135 −0.0089 −0.0247 0.9548 0.0316
(0.0005) (0.0211) (0.0073) (0.0154) (0.0218) (0.0150)

3,3 0.0002 −0.0003 0.0001 0.0269 −0.0180 0.9681
(0.0006) (0.0003) (0.0001) (0.0426) (0.0152) (0.0458)

it’s hard to argue that there is no obvious connection between, for instance, two

exchange rates (which presumably have the same numeraire currency, and

thus are both directly affected by any event which touches the numeraire).

Spillover has come to mean a model-based “Granger-style” causality, either in

the mean or (more commonly) in the variance, that is a question of whether a

set of coefficients on “other” variables are zero.

As we described earlier, the DVECH model doesn’t allow for spillover/causality

in the variance because the variance for each series depends only upon its own

lagged variance and its own lagged (squared) residuals. However, BEKK does,

so we’ll look more carefully at the results from it.

One important thing to note is that, as with standard Granger causality tests,

when you have three or more variables (we have three in this example), the

exclusion of a single variable from a single equation doesn’t really tell you

much—a shock to variable Z can affect variable X indirectly if a shock to Z
affects Y ’s variance and Y ’s variance affects X ’s. Thus, tests should really be of

block exclusions, either Z affects neither Y nor X, or X is not affected by either

Z nor Y . Example 5.4 does tests for causality (spillover), both in the mean and

in the variance. These are all done as “Wald tests”, which are most easily set

up using the Regression Tests wizard (the “Exclusion Tests” choice within that)

after running the GARCH model.

This time the GARCH model will be run on a one-lag VAR:

system(model=mvmean)

variables reuro rpound rsw

lags 1

det constant

end(system)

garch(model=mvmean,mv=bekk,robusterrors,pmethod=simplex,piters=20,$

method=bfgs,iters=500,rvectors=rd,hmatrices=hh)
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The first test is for exogeneity in the mean for all the variables (basically, that

the mean model could have been separate autoregressions on each variable):

test(zeros,title="Test of Exogeneity in Mean of All Variables")

# 2 3 5 7 9 10

which rather strongly rejects the null:

Test of Exogeneity of All Variables

Chi-Squared(6)= 29.165801 or F(6,*)= 4.86097 with Significance Level 0.00005660

Note, however, that because these are all exchange rates in terms of the US

dollar, it’s not all that surprising to find “causality” among them, as the use of

multiple series will make it simpler to distinguish between news that affects

mainly a single currency, and news that affects all of them (through the effect

on the relative value of the dollar).

Exogeneity tests in the mean for each of the three currencies require excluding

lags of the other two variables:

test(zeros,title="Test of Exogeneity in Mean of Euro")

# 2 3

*
test(zeros,title="Test of Exogeneity in Mean of Pound")

# 5 7

*
test(zeros,title="Test of Exogeneity in Mean of Swiss Franc")

# 9 10

all of which are strongly significant at conventional levels.

Moving on to the tests of the variance parameters, a test for whether there

is any spillover/causality in the variance for any of the series requires exclud-

ing all the “non-diagonal” elements of both A and B. Diagonality of A alone is

not enough, as that would only be testing for first-period effects—if B is not

diagonal, there can be effects at multiple steps.

test(zeros,title="Wald Test of Diagonal BEKK")

# 20 21 22 24 25 26 29 30 31 33 34 35

Wald Test of Diagonal BEKK

Chi-Squared(12)= 94.838308 or F(12,*)= 7.90319 with Significance Level 0.0000

The block exclusions for the variance are:



Multivariate GARCH: Basics 103

test(zeros,title="Block Exclusion Test, Euro Variance")

# 22 25 31 34

*
test(zeros,title="Block Exclusion Test, Pound Variance")

# 20 26 29 35

*
test(zeros,title="Block Exclusion Test, Swiss Franc Variance")

# 21 24 30 33

Note that these are excluding both the A’s and the B’s for both the other

variables—if you don’t, you could end up missing multiple-step effects—if those

four coefficients are zero, shocks to the other variables can’t (according to the

model) affect the variance of interest. Note also that, because of the way the

BEKK matrices are set up (with the transpose on the pre-multiplication term),

the coefficients that hit variance i have column (not row) i, so the test for the

Euro (variable 1) is a joint test for A(2, 1), A(3, 1), B(2, 1) and B(3, 1). The only

one of these that isn’t strongly significant is for the Swiss Franc (.019 signifi-

cance level).

5.6 CC Models: Constant Correlation

An alternative approach for creating a model which is easier to fit than the

DVECH model is the Constant Correlation (or CC) model of Bollerslev (1990).

The DVECH model uses a simple GARCH model for the variances—the numeri-

cal problems arise from the lack of connection between the variance recursions

and the covariance recursions. The CC model assumes that the covariances

are generated with a constant (but unknown) correlation. Whether this is too

restrictive will depend upon the application: from Figure 5.2, a constant cor-

relation between the Swiss Franc and Euro doesn’t seem unreasonable, but it

appears to be less likely to do well explaining the relationships of those with

the Pound.

The number of free parameters is reduced quite a bit. C, A and B are now just

n vectors, and the sub-diagonal of the correlation matrix has only n(n−1)/2 free

parameters—in our model, that’s 3 for a total of 12. The estimation typically

behaves well enough that it isn’t even necessary to choose a parameterization

of the correlation matrix which enforces positive-definiteness—in practice, it

doesn’t stray close enough to the region where the correlation matrix becomes

singular to need that extra protection.

This is estimated with RATS using the MV=CC option. You typically don’t need

any help from simplex iterations, so:

garch(model=mvmean,mv=cc,rvectors=rd,hmatrices=hh,robusterrors)

which gives us Table 5.6. The likelihood is quite a bit worse than for the DVECH

and BEKK models, so it seems that the graphical evidence that constant corre-

lation is inappropriate is confirmed.
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Table 5.6: Multivariate GARCH, CC Estimates

MV-GARCH, CC - Estimation by BFGS

Convergence in 50 Iterations. Final criterion was 0.0000017 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -3053.8808

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0313 0.0136 2.2933 0.0218

2. Constant 0.0168 0.0124 1.3598 0.1739

3. Constant 0.0289 0.0157 1.8327 0.0668

4. C(1) 0.0045 0.0012 3.6068 0.0003

5. C(2) 0.0048 0.0019 2.5703 0.0102

6. C(3) 0.0059 0.0016 3.5804 0.0003

7. A(1) 0.0547 0.0083 6.5670 0.0000

8. A(2) 0.0496 0.0093 5.3639 0.0000

9. A(3) 0.0460 0.0064 7.1888 0.0000

10. B(1) 0.9344 0.0093 100.3212 0.0000

11. B(2) 0.9343 0.0129 72.2737 0.0000

12. B(3) 0.9416 0.0071 133.3927 0.0000

13. R(2,1) 0.7082 0.0110 64.5446 0.0000

14. R(3,1) 0.9180 0.0048 193.1722 0.0000

15. R(3,2) 0.6503 0.0142 45.9335 0.0000

Of course, in practice, you would start with the simpler CC. The multivariate

diagnostics point to the inadequacy of the model, with a highly significant test

for lack of residual ARCH:

Multivariate Q(10)= 108.10427

Significance Level as Chi-Squared(90)= 0.09389

Test for Multivariate ARCH

Statistic Degrees Signif

353.00 72 0.00000

So if we did these in the more standard order of simplest first, it would point

us towards the need for a more complicated model. Tse (2000) provides an

LM test for CC against an alternative that the correlation that allows greater

adaptation to the observed (lagged) outer product of the residuals. This is im-

plemented with the procedure @TseCCTest. It requires that you first estimate

the CC model, saving the VECTOR[SERIES] of derivatives of the log likelihood

with respect to the free parameters. This requires the DERIVES option, used

before in Section 4.3 in doing fluctuations tests. It also needs the sequences of

residuals and variances that we’re already saving. For this model, we do:

garch(model=mvmean,mv=cc,rvectors=rd,hmatrices=hh,derives=dd)

@tsecctest(rvector=rd,hmatrices=hh,derives=dd)

which produces the somewhat disappointing (given what we know) result:

Tse Test for CC

Chi-Squared(3)= 7.712254 with Significance Level 0.05234836
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Table 5.7: Multivariate GARCH, CC with Spillover

MV-GARCH, CC with Spillover Variances - Estimation by BFGS

Convergence in 64 Iterations. Final criterion was 0.0000087 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -3032.9529

Variable Coeff Std Error T-Stat Signif

1. Constant 0.0272 0.0085 3.1882 0.0014

2. Constant 0.0144 0.0091 1.5938 0.1110

3. Constant 0.0240 0.0098 2.4594 0.0139

4. C(1) 0.0049 0.0011 4.5878 0.0000

5. C(2) 0.0047 0.0016 2.9046 0.0037

6. C(3) 0.0064 0.0015 4.3300 0.0000

7. A(1,1) 0.0898 0.0135 6.6510 0.0000

8. A(1,2) -0.0244 0.0096 -2.5541 0.0106

9. A(1,3) -0.0265 0.0094 -2.8074 0.0050

10. A(2,1) 0.0451 0.0114 3.9589 0.0001

11. A(2,2) 0.0386 0.0092 4.1735 0.0000

12. A(2,3) -0.0457 0.0095 -4.8358 0.0000

13. A(3,1) 0.0334 0.0156 2.1460 0.0319

14. A(3,2) -0.0180 0.0110 -1.6299 0.1031

15. A(3,3) 0.0240 0.0101 2.3768 0.0175

16. B(1) 0.9399 0.0078 121.0810 0.0000

17. B(2) 0.9462 0.0095 99.0982 0.0000

18. B(3) 0.9435 0.0067 139.8309 0.0000

19. R(2,1) 0.7120 0.0113 63.0283 0.0000

20. R(3,1) 0.9181 0.0045 202.9850 0.0000

21. R(3,2) 0.6556 0.0144 45.5062 0.0000

Since we’ve estimated a more general model and found that it fit much better,

the fact that the Tse test doesn’t pick up on that is unfortunate. It’s an LM

test against what would appear in this case to be an alternative which doesn’t

define a sharp enough contrast. The lesson is not to rely solely upon the Tse

test as a diagnostic for the CC model.

One nice feature of the CC framework is that the GARCH models for the vari-

ances can take almost any form. For instance, a multivariate EGARCH model

is created by using EGARCH models for the variances with the CC to handle

the covariances. To choose this, add the option VARIANCES=EXP to the GARCH

instruction:

garch(model=mvmean,mv=cc,variances=exp,$

rvectors=rd,hmatrices=hh,robusterrors)

which, here, fits even worse (log likelihood -3080.4548).

An alternative variance model which allows for a greater interaction is

VARIANCES=SPILLOVER, which adds “spillover” terms to the variance calcu-
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lation:

hii,t = cii +
∑

j

aiju
2

j,t−1 + bihii,t−1

garch(model=mvmean,mv=cc,variances=spillover,$

rvectors=rd,hmatrices=hh,robusterrors,$

pmethod=simplex,piters=20,iters=500)

This is no longer a “simpler” model than the DVECH—in this case, it has exactly

the same number of free parameters (21). It provides greater flexibility in the

variances, but less in the covariances. This produces some interesting results

(Table 5.7).

First, despite also having 21 parameters, the fit is much worse than the DVECH.

And note that most of the off-diagonal parameters in A are negative. Because

these are used directly (not squared, as in the BEKK), this would seem to imply

that spillover is negative rather than positive. However, this may be due to a

misspecification of the spillover effect. If it is the case that volatility goes up

more when the shocks have opposite signs, as we seemed to see in the BEKK

model, that can’t be captured by this model which only uses the magnitudes.

And, in fact, if it’s a linear combination with differing signs whose square mat-

ters, then it turns out that the closest (though not very close) fit to that given

only the squares has a negative coefficient on one of them.

5.7 DCC Models: Dynamic Conditional Correlation

The CC model has several advantages over the “vech” forms:

1. It doesn’t have the problem of possible non-positive definite covariance

matrices of the VECH and DVECH.

2. It allows more flexibility in handling the variances than BEKK, where the

positive-definiteness comes at a cost of a very specific variance recursion.

3. It can handle larger sets of series, as the number of parameters doesn’t

increase as fast with n.

But that comes at the major drawback of assuming that the conditional corre-

lation is constant. It didn’t take long for models to be proposed which relaxed

that assumption. If we have a model which, at time t, produces an n vector

of variances ht, and an n × n correlation matrix Rt (positive-definite symmet-

ric matrix with 1’s on the diagonal), then Rt and ht can be converted into a

covariance matrix H by

Ht,ij =
√

ht,i

√

ht,jRt,ij
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If n = 2, there are many ways to produce such an Rt, as there is only one

free value in it (since it’s symmetric with 1’s on the diagonal), and it’s posi-

tive definite if and only if the (1, 2) element has absolute value less than 1.

For instance, if it is expected that the correlation would be monotonic in some

exogenous variable Z, then a logistic mapping such as

log

(

1 + ρt
1− ρt

)

= γ + δZt

can be used, at least as an approximation.8 And it’s possible to take this idea

and make the logistic index a function of the past residuals, so the correlation

adapts to the recent past of the data.

However, the logistic mapping doesn’t generalize well to more than n = 2. En-

gle (2002) proposed a more general method which he labeled Dynamic Con-

ditional Correlations which can be applied to an arbitrary number of series.9

This uses a GARCH-like secondary recursion that generates a symmetric matrix

which is converted into the correlation matrix:

Qt = (1− a− b)Q̄+ bQt−1 + aεt−1ε
′

t−1

Rt = diag(Qt)
−1/2

Qtdiag(Qt)
−1/2

(5.7)

where Q̄ is a fixed matrix towards which the Q matrices “shrink”. εt−1 is the

lagged univariate standardized residual, that is, each component is divided by

its own estimated standard deviation. If the GARCH models are correct, the

expected value of εt−1ε
′

t−1 is a “correlation matrix”:

1. it has to be positive semi-definite (it’s rank one, so it is only semi-definite)

2. the expected values of the diagonal elements are 1

Since Q̄ and the pre-sample Q (which is made equal to Q̄) will be positive def-

inite by construction, as long as b is non-zero, each Qt will be positive definite

as well. A weighted average like this of actual correlation matrices would also

be a correlation matrix, but because the final term is only a correlation matrix

in expected value, Qt itself isn’t a correlation matrix, but as a positive definite

symmetric matrix can be converted to one as in (5.7).

In Engle’s procedure,

Q̄ =
1

T

∑

t

εtε
′

t (5.8)

that is, it’s the average outer product of the standardized residuals. One prob-

lem with this in practice is that εt, as the standardized residual, depends upon

the estimated GARCH variances. While each individual εt−1 in (5.7) will be

8
This takes a logistic and remaps it from (0,1) to (-1,1).

9
Note that the phrase “Dynamic Conditional Correlations” has also been applied in some

papers to other methods of generating time-varying correlations.
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known when they’re needed, the Q̄ depends upon the entire data range (and

would change with changes to the univariate GARCH parameters). That spe-

cific calculation is really only feasible with the “two-step” procedure that Engle

describes:

1. fit univariate GARCH processes to all the series

2. take the residuals and variances from those as given, compute Q̄ (which

will now be a fixed matrix once the residuals and variances are given) and

estimate the a and b values and generate the time-varying correlations

with them.

Engle shows that the two-step procedure is consistent, though inefficient (since

the univariate GARCH estimates aren’t taking into account the correlations

with the other processes). However, it can feasibly be applied to rather large

sets of series because there are only two free parameters in the multivariate

maximization—the univariate GARCH models are estimated separately.

One major drawback to the two-step procedure (inefficiency aside) is that it can

only be used if the univariate GARCH models are self-contained. The models

designed for use with CC or DCC that provide for some type of “spillover” in

computing the variances can’t be used since they need joint estimation anyway

to generate all the information needed.

To allow for feasible use of DCC for a broader set of models, in GARCH with the

option MV=DCC, the Q̄ matrix is computed using the sample correlation matrix

of (non-standardized) residuals from a preliminary estimate of the mean model.

In practice, the difference is likely to be minor.10

An alternative for generating the correlation matrices which is, in fact, what

the GARCH instruction does by default, is to do the recursion (5.7) using co-

variance matrices rather than correlations—instead of the standardized resid-

uals εt−1, it uses the equation residuals ut and instead of Q̄ being the sample

correlation matrix, it’s the sample covariance matrix. In practice, the differ-

ence ends up being minor, though when it isn’t, the recursion in the covari-

ances is generally the one that does better. The recursion in correlations gives

greater weight to entries which are outliers according to the GARCH model

(large standardized residuals), while the recursion in covariances puts greater

weight on entries which have large non-standardized residuals—in most cases,

the two are the same. The choice between the two is controlled by the option

DCC=COVARIANCES (default) or DCC=CORRELATIONS.11

A third option is the “corrected DCC” of Aielli (2013). Aielli shows that the orig-

inal Engle recursion isn’t internally consistent (in the non-statistical sense)—

the expectation of εt−1ε
′

t−1 isn’t Qt−1 as it would be if (5.7) were a GARCH model,

10
The effect of the Q̄ matrix is short-lived unless a and b are fairly small, which generally

means that a CC model would have been a better choice.
11

These were added with Version 10.
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and Engle’s Q̄ isn’t the stationary solution of (5.7) (unless the true DGP is CC

rather than DCC). The corrected DCC scales up εt−1 by the (square roots of) the

diagonal elements of Qt−1. You get this by using the option DCC=CDCC.

While DCC is a common choice, particularly with larger numbers of series, there

is no GARCH model which works well under all conditions, and this is no excep-

tion:

1. If CC is correct, then the parameters of DCC aren’t identified: any com-

bination with a = 0 and any value of b will produce the same correlation

matrix all the way through the data set, since the presample value of Q

is the same as Q̄.

2. If the correlations are small (that is, near zero), even if they aren’t fixed,

it will be hard to estimate the DCC parameters because the log likelihood

is very flat near zero.

3. Because DCC is using only one pair of free parameters for an n variable

correlation subsystem, if you have many series and they have very dif-

ferent dynamics, the DCC may end up overdoing the “dynamics” in some

pairs to fit the others reasonably.

You should always do a CC model as well (first!) as it may give you some infor-

mation as to whether you are running into problems with 1 and 2. Note that

CC and DCC don’t really nest—DCC uses just the two parameters to generate

the correlation matrix, as the Q̄ isn’t freely estimated.

Example 5.6 estimates a standard DCC-GARCH model (that is, with standard

GARCH models for the univariate variance estimates) to the Enders data set

used in the other examples in this chapter.

garch(model=mvmean,mv=dcc,robusterrors,$

rvectors=rd,hmatrices=hh,stdresids=rstd,factorby=eigen,$

iters=500,pmethod=simplex,piters=10)

The output is in Table 5.8. DCC(A) and DCC(B) are the a and b parameters

from the recursion to generate the correlation matrix. When DCC “works”, this

is the type of pattern you will generally see—a is fairly small (typically under

.1) and b is large, with the two generally summing to somewhere above .9,

often, as here, nearly to 1. If we compare the log likelihood to the other models,

we see that this is much better than CC, is somewhat worse than DVECH and

BEKK, but is better than both of those if we apply the SBC as it has many fewer

parameters than those other models.

A common task is to graph the conditional correlations generated by the model.

Note that all other forms of multivariate GARCH models (other than CC) will

also produce time-varying correlations, which can be computed and displayed

in exactly the same way—we already did this in Example 5.2.
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Table 5.8: DCC GARCH Model

MV-DCC GARCH - Estimation by BFGS

Convergence in 74 Iterations. Final criterion was 0.0000071 <= 0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Daily(5) Data From 2000:01:04 To 2008:12:23

Usable Observations 2341

Log Likelihood -2774.2692

Variable Coeff Std Error T-Stat Signif

Mean Model(REURO)

1. Constant 0.0256 0.0087 2.9312 0.0034

Mean Model(RPOUND)

2. Constant 0.0154 0.0096 1.6041 0.1087

Mean Model(RSW)

3. Constant 0.0210 0.0098 2.1345 0.0328

4. C(1) 0.0024 0.0010 2.4998 0.0124

5. C(2) 0.0031 0.0014 2.2454 0.0247

6. C(3) 0.0031 0.0012 2.6588 0.0078

7. A(1) 0.0408 0.0067 6.1000 0.0000

8. A(2) 0.0481 0.0059 8.0903 0.0000

9. A(3) 0.0373 0.0049 7.5720 0.0000

10. B(1) 0.9539 0.0083 115.2548 0.0000

11. B(2) 0.9438 0.0087 108.2947 0.0000

12. B(3) 0.9568 0.0065 146.6784 0.0000

13. DCC(A) 0.0226 0.0059 3.8156 0.0001

14. DCC(B) 0.9752 0.0071 136.4902 0.0000
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Figure 5.3: DCC Correlations

With two or three series, it’s generally easiest to just set up the correlation

graphs directly:

set r_euro_pound %regstart() %regend() = %cvtocorr(hh(t))(1,2)

set r_euro_sw %regstart() %regend() = %cvtocorr(hh(t))(1,3)

set r_pound_sw %regstart() %regend() = %cvtocorr(hh(t))(2,3)

spgraph(vfields=3,footer="Conditional Correlations from DCC")

graph(header="Euro with Pound",min=-1.0,max=1.0)

# r_euro_pound

graph(header="Euro with Swiss Franc",min=-1.0,max=1.0)

# r_euro_sw

graph(header="Pound with Swiss Franc",min=-1.0,max=1.0)

# r_pound_sw

spgraph(done)

This (Figure 5.3) uses -1 to 1 ranges on all the series. If you don’t include

those, you could easily have graphs which overemphasize what may be very

small changes to correlations. For instance, the Euro with the Swiss Franc,

over almost the entire range (other than the last year) shows almost no change

at all, but without pinning the range, the (actually fairly minor) dip in late

2001 would be spread across almost the entire vertical range of the graph. It’s

important not to overanalyze the movements in these. We’ll see later Section

10.2.3) how it is possible to put some type of error band on these, but remember

that these are just point estimates.

An alternative to manually putting together a correlation graph is the follow-

ing, which generates the same graph programmatically using “long labels” in-

put for the series. This is useful if you have more than 3 series (though the

graphs get rather crowded above 5), or if you’re using 2 or 3 series from a

longer list.
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compute totalfields=%nvar*(%nvar-1)/2

compute hfields=fix(sqrt(totalfields))

compute vfields=(totalfields-1)/hfields+1

spgraph(vfields=vfields,hfields=hfields,$

footer="Conditional Correlations from DCC")

do i=1,%nvar

do j=i+1,%nvar

set ccorr = %cvtocorr(hh(t))(i,j)

graph(header=longlabel(i)+" with "+longlabel(j),$

min=-1.0,max=1.0)

# ccorr

end do j

end do i

spgraph(done)
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5.8 RATS Tips and Tricks

5.8.1 Graphics with Multiple Series

It’s very common in working with multivariate GARCH models to need some-

thing similar to Figure 5.1: a graph with multiple fields of relatively similar

types of data. There are a number of decisions you need to make in trying to

make these presentable for publication. One is how to label the fields. Here,

we did it by using the YLABELS option on the enclosing SPGRAPH, which labels

them in the left margin, as shown in the figure. The most common alternative

is to include a label on each GRAPH instruction. In many cases, the graphs are

simply lettered with (a), (b) and (c), with descriptions in the captions. For three

series, it’s probably easiest to do three separate GRAPH instructions, rather

than using the DOFOR loop:

spgraph(vfields=3)

graph(picture="*.#",hlabel="(a)")

# reuro

graph(picture="*.#",hlabel="(b)")

# rpound

graph(picture="*.#",hlabel="(c)")

# rsw

spgraph(end)

(or the same with more descriptive titles). It usually looks best to use an

HLABEL (which puts the information below each graph) rather than a HEADER

(which puts it above). However, labeling on the left margin in some form typ-

ically gives a better appearance. There are two problems with inserting the

labels between graphs

1. It’s not clear (to the reader) at a quick glance to which graph the label

applies.

2. The individual graphs are already disproportionately wide. Inserting la-

bels between graphs makes them even smaller in the vertical direction,

while marginal labels make them narrower horizontally.

Aside from the layout, as you can see in Figure 5.1, the labeling of the values

on the vertical axis varies from graph to graph, which can look a bit odd, par-

ticularly when the scales aren’t actually that different. We used the PICTURE

option on the GRAPH instructions in the example to force them to at least align

the same, even if the values were different.12 However, where the series are as

similar in scale as these are, a better solution both visually, and for interpre-

tation, is to force them onto a common scale. The easiest way to do that is to

12
The pound has labels at 2.5 and -2.5 and thus needs a digit right of the decimal, while the

other two can (and by default will) just use integers.
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Figure 5.4: Exchange Rate Returns, Prettied Up

use the TABLE instruction, which sets the variables %MAXIMUM and %MINIMUM

as the overall maximum and minimum values of all the series covered. If we

switch now to marginal labels with (a), (b), and (c):

table / reuro rpound rsw

spgraph(vfields=3,ylabels=||"(a)","(b)","(c)"||)

dofor r = reuro rpound rsw

graph(min=%minimum,max=%maximum)

# r

end dofor

spgraph(done)

we get Figure 5.4, which has a much cleaner appearance.

5.8.2 Fancy Table of Diagnostics

To make an interesting report out of this, we will need more descriptive labels

of the currencies, which we can get with:

dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

A first go at this would insert a few REPORT instructions (and delete the

DISPLAY).

Table 5.9: Sample Univariate Diagnostics

Currency Q Signif ARCH Signif

Euro 8.734 0.558 16.303 0.038

UK Pound 13.556 0.194 9.688 0.288

Swiss Franc 4.448 0.925 9.149 0.330
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report(action=define)

report(atrow=1,atcol=1) "Currency" "Q" "Signif" "ARCH" "Signif"

do i=1,%nvar

set ustd = rd(t)(i)/sqrt(hh(t)(i,i))

set ustdsq = ustdˆ2

@regcorrs(number=10,nocrits,nograph,qstat) ustd

compute q1=%cdstat,q1signif=%signif

@regcorrs(number=10,nocrits,nograph,qstat,dfc=2) ustdsq

compute q2=%cdstat,q2signif=%signif

report(atrow=i+1,atcol=1) longlabel(i) q1 q1signif q2 q2signif

end do i

report(action=show)

Without additional formatting, that produces:

Currency Q Signif ARCH Signif

Euro 8.733736 0.557546 16.303304 0.038239

UK Pound 13.556423 0.194203 9.688304 0.287588

Swiss Franc 4.447671 0.924901 9.149159 0.329870

We need to show fewer digits (3 is probably good for everything), and it would

look better to center the column headers over the numerical columns. However,

the “Currency” header should still be left-justified. Two REPORT instructions

with ACTION=FORMAT will take care of this. These are inserted just before the

REPORT(ACTION=SHOW):

report(action=format,align=center,atrow=1,torow=1,atcol=2)

report(action=format,picture="*.###")

On the first of these, we need to make sure the ALIGN=CENTER only applies

where we want it: ATROW=1 and TOROW=1 limit it to row 1, and ATCOL=2 (with-

out TOCOL) limits it to columns from 2 until the end. We don’t have to worry

about that with the second, since PICTURE only applies to numerical cells. The

end result is Table 5.9.
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Example 5.1 Multivariate GARCH: Preliminaries/Diagnostics

This includes the programs from Sections 5.1, 5.2 and 5.3.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
spgraph(vfields=3,ylabels=||"Euro","Pound","Swiss Franc"||)

dofor r = reuro rpound rsw

graph(picture="*.#")

# r

end dofor

spgraph(done)

*

* Look at possible lag lengths

*
@varlagselect(crit=bic,lags=5)

# reuro rpound rsw

*
system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

*

* Test for ARCH effects

*
estimate(resids=resids)

@mvarchtest

# resids

*
garch(model=mvmean,mv=diag,p=1,q=1,$

rvectors=rd,hmatrices=hh,stdresids=rstd,factorby=eigen)

*

* Univariate diagnostics

*
do i=1,%nvar

set ustd = rd(t)(i)/sqrt(hh(t)(i,i))

set ustdsq = ustdˆ2

@regcorrs(number=10,nocrits,nograph,qstat) ustd

compute q1=%cdstat,q1signif=%signif

@regcorrs(number=10,nocrits,nograph,qstat,dfc=2) ustdsq

compute q2=%cdstat,q2signif=%signif

disp q1 q1signif q2 q2signif

end do i

*

* Multivariate diagnostics
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*
@mvqstat(lags=10)

# rstd

@mvarchtest(lags=2)

# rstd

Example 5.2 Multivariate GARCH: DVECH Estimates

This is the program from Section 5.4.1.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

*
system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

*
garch(model=mvmean,rvectors=rd,hmatrices=hh,robusterrors,$

pmethod=simplex,piters=20,method=bfgs,iters=500)

*
dec vect meanparms(%nregmean)

dec symm cdvech(%nvar,%nvar) advech(%nvar,%nvar) bdvech(%nvar,%nvar)

nonlin(parmset=dvech) meanparms cdvech advech bdvech

compute %parmspoke(dvech,%beta)

*

* Display the sum of the A and B matrices

*
disp advech+bdvech

*

* Extract the time-varying correlations and the variances

*
dec symm[series] hhx(%nvar,%nvar)

do i=1,%nvar

set hhx(i,i) = hh(t)(i,i)

do j=1,i-1

set hhx(i,j) = %cvtocorr(hh(t))(i,j)

end do j

end do i

*

* This is specific to a 3 variable system
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*
table / hhx(2,1) hhx(3,1) hhx(3,2)

compute corrmin=%minimum

*
table / hhx(1,1) hhx(2,2) hhx(3,3)

compute varmax=%maximum

*
spgraph(vfields=%nvar,hfields=%nvar,$

xlabels=longlabel,ylabels=longlabel)

do i=1,%nvar

do j=1,%nvar

if i==j {

graph(row=i,col=i,maximum=varmax)

# hhx(i,i)

}

else {

graph(row=i,col=j,maximum=1.0,min=corrmin)

# hhx(i,j)

}

end do j

end do i

spgraph(done)

Example 5.3 Multivariate GARCH: BEKK Estimates

This is the program from Section 5.4.2.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

*
system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

*
garch(model=mvmean,mv=bekk,robusterrors,pmethod=simplex,piters=20,$

method=bfgs,iters=500,rvectors=rd,hmatrices=hh,$

stdresids=rstd,factorby=eigen)

*

* Convert to equivalent VECH representation

*
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@MVGARCHToVECH(mv=bekk)

disp ##.### %%vech_a

*

* Display eigenvalues of persistence matrix

*
eigen(cvalues=cv) %%vech_a+%%vech_b

disp ##.### cv

*
@mvqstat(lags=10)

# rstd

@mvarchtest(lags=2)

# rstd

**********************************************************

*
dec vect means(%nregmean)

dec packed cx(%nvar,%nvar)

dec rect ax(%nvar,%nvar) bx(%nvar,%nvar)

nonlin(parmset=garchparms) means cx ax bx

summarize(parmset=garchparms) bx(1,1)ˆ2

summarize(parmset=garchparms) bx(1,1)*bx(1,2)*2.0

summarize(parmset=garchparms) bx(1,2)ˆ2

*
compute ncomp=%nvar*(%nvar+1)/2

dec rect %%vech_bse(ncomp,ncomp)

do m=1,ncomp

do n=1,ncomp

compute i=%symmrow(m),j=%symmcol(m),$

k=%symmrow(n),l=%symmcol(n)

if k==l {

summarize(noprint,parmset=garchparms) bx(i,k)*bx(j,l)

compute %%vech_bse(m,n)=sqrt(%varlc)

}

else {

summarize(noprint,parmset=garchparms) $

bx(i,k)*bx(j,l)+bx(i,l)*bx(j,k)

compute %%vech_bse(m,n)=sqrt(%varlc)

}

end do n

end do m

*
report(action=define,title="VECH-B from BEKK")

do j=1,ncomp

report(atrow=1,atcol=j+1,align=center) $

%string(%symmrow(j))+","+%symmcol(j)

end do i

do i=1,ncomp

report(atrow=2*i,atcol=1) %string(%symmrow(i))+","+%symmcol(i)

do j=1,ncomp

report(atrow=2*i,atcol=j+1) %%vech_b(i,j)

report(atrow=2*i+1,atcol=j+1,special=parens) %%vech_bse(i,j)

end do j

end do i

report(action=format,atrow=2,picture="##.####",align=decimal)

report(action=show)
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Example 5.4 Multivariate GARCH: Spillover Tests

This is the example from Section 5.5.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

*
system(model=mvmean)

variables reuro rpound rsw

lags 1

det constant

end(system)

*
garch(model=mvmean,mv=bekk,robusterrors,pmethod=simplex,piters=20,$

method=bfgs,iters=500,rvectors=rd,hmatrices=hh)

*
test(zeros,title="Test of Exogeneity in Mean of All Variables")

# 2 3 5 7 9 10

*
test(zeros,title="Test of Exogeneity in Mean of Euro")

# 2 3

*
test(zeros,title="Test of Exogeneity in Mean of Pound")

# 5 7

*
test(zeros,title="Test of Exogeneity in Mean of Swiss Franc")

# 9 10

*
test(zeros,title="Wald Test of Diagonal BEKK")

# 20 21 22 24 25 26 29 30 31 33 34 35

*
test(zeros,title="Block Exclusion Test, Euro Variance")

# 22 25 31 34

*
test(zeros,title="Block Exclusion Test, Pound Variance")

# 20 26 29 35

*
test(zeros,title="Block Exclusion Test, Swiss Franc Variance")

# 21 24 30 33
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Example 5.5 Multivariate GARCH: CC Estimates

This is the example from Section 5.6.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

*
system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

*
garch(model=mvmean,mv=cc,robusterrors,$

rvectors=rd,hmatrices=hh,stdresids=rstd,factorby=eigen)

*

* Multivariate diagnostics

*
@mvqstat(lags=10)

# rstd

@mvarchtest(lags=2)

# rstd

*

* Tse test for CC

* We need the derivatives of the log likelihood, which we save into

* the VECTOR[SERIES] called DD.

*
garch(model=mvmean,mv=cc,rvectors=rd,hmatrices=hh,derives=dd)

@tsecctest(rvector=rd,hmatrices=hh,derives=dd)

*

* EGARCH with CC

*
garch(model=mvmean,mv=cc,variances=exp,$

rvectors=rd,hmatrices=hh,robusterrors)

*

* CC GARCH with spillover

*
garch(model=mvmean,mv=cc,variances=spillover,$

rvectors=rd,hmatrices=hh,robusterrors,$

pmethod=simplex,piters=20,iters=500)
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Example 5.6 Multivariate GARCH: DCC Estimates

This is the example from Section 5.7.

open data "exrates(daily).xls"

calendar(d) 2000:1:3

data(format=xls,org=columns) 2000:01:03 2008:12:23 $

aust euro pound sw ca

*
set reuro = 100.0*log(euro/euro{1})

set rpound = 100.0*log(pound/pound{1})

set rsw = 100.0*log(sw/sw{1})

*
dec vect[string] longlabel(3)

compute longlabel=||"Euro","UK Pound","Swiss Franc"||

*
system(model=mvmean)

variables reuro rpound rsw

lags

det constant

end(system)

*
garch(model=mvmean,mv=dcc,robusterrors,$

rvectors=rd,hmatrices=hh,stdresids=rstd,factorby=eigen,$

iters=500,pmethod=simplex,piters=10)

*

* Multivariate diagnostics

*
@mvqstat(lags=10)

# rstd

@mvarchtest(lags=2)

# rstd

*

* This does the conditional correlation graphs with hard coding

* (which probably is simplest with 2 or 3 series).

*
set r_euro_pound %regstart() %regend() = %cvtocorr(hh(t))(1,2)

set r_euro_sw %regstart() %regend() = %cvtocorr(hh(t))(1,3)

set r_pound_sw %regstart() %regend() = %cvtocorr(hh(t))(2,3)

spgraph(vfields=3,footer="Conditional Correlations from DCC")

graph(header="Euro with Pound",min=-1.0,max=1.0)

# r_euro_pound

graph(header="Euro with Swiss Franc",min=-1.0,max=1.0)

# r_euro_sw

graph(header="Pound with Swiss Franc",min=-1.0,max=1.0)

# r_pound_sw

spgraph(done)

*

* This does the conditional correlations for an arbitrary number of

* series using the <<longlabel>> VECTOR of STRINGS to manage the

* labels. This probably gets too cluttered when N is bigger than 5.

*
compute totalfields=%nvar*(%nvar-1)/2
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compute hfields=fix(sqrt(totalfields))

compute vfields=(totalfields-1)/hfields+1

spgraph(vfields=vfields,hfields=hfields,$

footer="Conditional Correlations from DCC")

do i=1,%nvar

do j=i+1,%nvar

set ccorr = %cvtocorr(hh(t))(i,j)

graph(header=longlabel(i)+" with "+longlabel(j),$

min=-1.0,max=1.0)

# ccorr

end do j

end do i

spgraph(done)


