Hi Tom,
I am estimating a VAR-Bekk model.
But diagnostic tests show that there are serial correlation between residuals and squared residuals. I used many lags but the problem still is here.
I don't know what to do and what's the problem with my model. Here is the results and data.
MV-GARCH, BEKK - Estimation by BFGS
Convergence in 86 Iterations. Final criterion was 0.0000080 <= 0.0000100
Usable Observations 1211
Log Likelihood -3719.0235
Variable Coeff Std Error T-Stat Signif
************************************************************************************
Mean Model(RTEPIX)
1. RTEPIX{1} 0.356840835 0.025307333 14.10029 0.00000000
2. RTEPIX{2} -0.013958931 0.026616815 -0.52444 0.59997232
3. RCOIN{1} -0.016331690 0.011754705 -1.38937 0.16471883
4. RCOIN{2} 0.018265675 0.012985721 1.40660 0.15954695
5. REX{1} 0.014792658 0.012804938 1.15523 0.24799595
6. REX{2} 0.023228690 0.012417720 1.87061 0.06139939
7. Constant -0.001061212 0.010126336 -0.10480 0.91653675
Mean Model(RCOIN)
8. RTEPIX{1} 0.061440022 0.040571549 1.51436 0.12993399
9. RTEPIX{2} 0.017191004 0.041208453 0.41717 0.67655275
10. RCOIN{1} 0.048180292 0.023319299 2.06611 0.03881787
11. RCOIN{2} -0.084908253 0.025030851 -3.39214 0.00069348
12. REX{1} -0.096842723 0.037185150 -2.60434 0.00920518
13. REX{2} 0.069483173 0.033987836 2.04435 0.04091857
14. Constant 0.033570688 0.024864922 1.35012 0.17697672
Mean Model(REX)
15. RTEPIX{1} 0.000014895 0.013898893 0.00107 0.99914491
16. RTEPIX{2} 0.016894471 0.012303875 1.37310 0.16972074
17. RCOIN{1} 0.008707838 0.009760591 0.89214 0.37231656
18. RCOIN{2} -0.040621795 0.010642314 -3.81701 0.00013508
19. REX{1} -0.024894645 0.024594886 -1.01219 0.31144825
20. REX{2} -0.096227906 0.026927006 -3.57366 0.00035203
21. Constant 0.007144155 0.007756727 0.92103 0.35703629
22. C(1,1) 0.103914068 0.011591412 8.96475 0.00000000
23. C(2,1) -0.070948467 0.020223345 -3.50825 0.00045107
24. C(2,2) 0.035304293 0.042335022 0.83393 0.40432245
25. C(3,1) -0.025324483 0.014714289 -1.72108 0.08523614
26. C(3,2) 0.000132656 0.029473720 0.00450 0.99640889
27. C(3,3) -0.000053435 0.024701834 -0.00216 0.99827401
28. A(1,1) 0.291953794 0.023175837 12.59734 0.00000000
29. A(1,2) 0.028216551 0.027416775 1.02917 0.30339930
30. A(1,3) -0.050407145 0.014019247 -3.59557 0.00032369
31. A(2,1) -0.093510466 0.009153410 -10.21592 0.00000000
32. A(2,2) 0.226824872 0.017036717 13.31388 0.00000000
33. A(2,3) 0.068778361 0.008795413 7.81980 0.00000000
34. A(3,1) 0.020153175 0.016652668 1.21021 0.22619948
35. A(3,2) 0.149401167 0.032214834 4.63765 0.00000352
36. A(3,3) 0.692727451 0.017306683 40.02659 0.00000000
37. B(1,1) 0.930043085 0.008699801 106.90394 0.00000000
38. B(1,2) -0.005327872 0.012446308 -0.42807 0.66860127
39. B(1,3) 0.046867599 0.008303195 5.64453 0.00000002
40. B(2,1) 0.022896938 0.003121553 7.33511 0.00000000
41. B(2,2) 0.976021276 0.004132489 236.18244 0.00000000
42. B(2,3) -0.003287474 0.003990009 -0.82393 0.40998129
43. B(3,1) -0.013286749 0.004941800 -2.68865 0.00717425
44. B(3,2) -0.061202492 0.008838985 -6.92415 0.00000000
45. B(3,3) 0.841698669 0.005393331 156.06287 0.00000000
Multivariate Q Test
Test Run Over 3 to 1213
Lags Tested 10
Degrees of Freedom 78
D of F Correction 12
Q Statistic 232.8999
Signif Level 0.0000
Multivariate ARCH Test
Statistic Degrees Signif
488.38 360 0.00001