M-GARCH-M in GARCH Wizard
Posted: Sat Jul 30, 2011 6:37 pm
Hello,
How can I estimate a multivariate GARCH in the mean model within the GARCH Wizard?
How can I estimate a multivariate GARCH in the mean model within the GARCH Wizard?
A Forum for RATS Software and Econometrics Discussions
https://estima.com/forum/

Code: Select all
CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10 DATES OIL IPI
/* PRE-ESTIMATION */
dec symm[series] hhs(2,2)
clear(zeros) hhs
equation oileq oil
# constant hhs(1,1) hhs(1,2)
equation ipieq ipi
# constant hhs(2,1) hhs(2,2)
group garchm oileq ipieq
garch(model=garchm,p=1,q=1,pmethod=simplex,piters=10,$
mvhseries=hhs)
/* ESTIMATION OF THE M-GARCH-M */
GARCH(P=1,Q=1,MV=BEKK,REGRESSORS) / OIL IPI
# Constant OIL IPI HHS(1,1) HHS(2,1) HHS(2,2)Code: Select all
MV-GARCH, BEKK - Estimation by BFGS
Convergence in 159 Iterations. Final criterion was 0.0000000 <= 0.0000100
Monthly Data From 1973:11 To 2007:10
Usable Observations 408
Log Likelihood 2090.6861
Variable Coeff Std Error T-Stat Signif
***************************************************************************************************************************************************
1. Constant -4.0560e-003 7.6905e-004 -5.27400 0.00000013
2. OIL -0.6627 0.0960 -6.90462 0.00000000
3. IPI 0.0000 0.0000 0.00000 0.00000000
4. HHS(1,1) 0.0000 0.0000 0.00000 0.00000000
5. HHS(2,1) 0.0000 0.0000 0.00000 0.00000000
6. HHS(2,2) 0.0000 0.0000 0.00000 0.00000000
7. ¾OYÃ\݇?øzøÂÚf»>nŸ)ÝHL¿Ã„Ô¤ô²¼?Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` -4.9031e+238 0.0000 0.00000 0.00000000
8. Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ
U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 4203.2627 0.0000 0.00000 0.00000000
9. ¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 0.0000 0.0000 0.00000 0.00000000
10. ó–qýì>ð`nŽ}k=?§"=N÷ªì?åv>ÔÖ⾊·øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 36793.2891 0.0000 0.00000 0.00000000
11. øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 1.1731e+021 0.0000 0.00000 0.00000000
12. P‡>&}ð(Í?5¿ˆÍžjc -2.5677e+045 0.0000 0.00000 0.00000000
13. C(1,1) -7.2427e-003 1.7902e-003 -4.04579 0.00005215
14. C(2,1) -8.8975e-005 1.6438e-003 -0.05413 0.95683315
15. C(2,2) 2.8661e-006 4.9067e-003 5.84128e-004 0.99953393
16. A(1,1) -0.8041 0.1463 -5.49438 0.00000004
17. A(1,2) -0.2136 0.1126 -1.89697 0.05783225
18. A(2,1) 0.2031 0.2289 0.88734 0.37489799
19. A(2,2) -0.3593 0.1668 -2.15351 0.03127829
20. B(1,1) 1.2237 0.2725 4.49011 0.00000712
21. B(1,2) 1.1514 0.1842 6.25248 0.00000000
22. B(2,1) -0.6243 0.4439 -1.40662 0.15953878
23. B(2,2) -0.9113 0.2513 -3.62565 0.00028824That's out of the second GARCH instruction, which isn't properly formed. The REGRESSORS option was never really designed to work on a multivariate model; instead, you need to use the MODEL option, as is done in your first GARCH.PERRY wrote:Running the above program I get the following output:
Code: Select all
MV-GARCH, BEKK - Estimation by BFGS Convergence in 159 Iterations. Final criterion was 0.0000000 <= 0.0000100 Monthly Data From 1973:11 To 2007:10 Usable Observations 408 Log Likelihood 2090.6861 Variable Coeff Std Error T-Stat Signif *************************************************************************************************************************************************** 1. Constant -4.0560e-003 7.6905e-004 -5.27400 0.00000013 2. OIL -0.6627 0.0960 -6.90462 0.00000000 3. IPI 0.0000 0.0000 0.00000 0.00000000 4. HHS(1,1) 0.0000 0.0000 0.00000 0.00000000 5. HHS(2,1) 0.0000 0.0000 0.00000 0.00000000 6. HHS(2,2) 0.0000 0.0000 0.00000 0.00000000 7. ¾OYÃ\݇?øzøÂÚf»>nŸ)ÝHL¿Ã„Ô¤ô²¼?Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` -4.9031e+238 0.0000 0.00000 0.00000000 8. Ðõá0¼>{Õ¾të±?8ÄhL®~¿àÊNŸŠ U¾Ð¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 4203.2627 0.0000 0.00000 0.00000000 9. ¼—šµÔe¾d ÂgÇ|B¾ç‘Àtš—5¿~` 0.0000 0.0000 0.00000 0.00000000 10. ó–qýì>ð`nŽ}k=?§"=N÷ªì?åv>ÔÖ⾊·øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 36793.2891 0.0000 0.00000 0.00000000 11. øbn¼?]˜9,ÞÔ?>y*è…¦¾o•¤að„¾ê"£|P‡>&}ð(Í?5¿ˆÍžjc 1.1731e+021 0.0000 0.00000 0.00000000 12. P‡>&}ð(Í?5¿ˆÍžjc -2.5677e+045 0.0000 0.00000 0.00000000 13. C(1,1) -7.2427e-003 1.7902e-003 -4.04579 0.00005215 14. C(2,1) -8.8975e-005 1.6438e-003 -0.05413 0.95683315 15. C(2,2) 2.8661e-006 4.9067e-003 5.84128e-004 0.99953393 16. A(1,1) -0.8041 0.1463 -5.49438 0.00000004 17. A(1,2) -0.2136 0.1126 -1.89697 0.05783225 18. A(2,1) 0.2031 0.2289 0.88734 0.37489799 19. A(2,2) -0.3593 0.1668 -2.15351 0.03127829 20. B(1,1) 1.2237 0.2725 4.49011 0.00000712 21. B(1,2) 1.1514 0.1842 6.25248 0.00000000 22. B(2,1) -0.6243 0.4439 -1.40662 0.15953878 23. B(2,2) -0.9113 0.2513 -3.62565 0.00028824
Tom thank you again for all the help, I really appreciate it.TomDoan wrote:The first of the two looks correct. Generally, you
only include the "own" covariances in the mean model. The second one
clearly is incorrect, because you're including current OIL in the
equations---perhaps you mean OIL{1} which would put the lagged value
in.
Code: Select all
CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10
DATES OIL IPICode: Select all
dec symm[series] hhs(2,2)
clear(zeros) hhsCode: Select all
equation oileq oil
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
equation ipieq ipi
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)Code: Select all
group garchm oileq ipieqCode: Select all
garch(model=garchm,p=1,q=1,mv=BEKK,pmethod=simplex,piters=10,$
mvhseries=hhs)Code: Select all
mvhseries=hhsYes. The key is to refer to the same variable name on both the MVHSERIES option and in your equations.PERRY wrote: Is the following the part where RATS stores the conditional variances/covariances in the hss matrix?
Code: Select all
mvhseries=hhs
Code: Select all
CALENDAR(M) 1973:11
OPEN DATA "C:\Users\User\Desktop\110722 Energy RATS\dataus.txt"
DATA(FORMAT=PRN,NOLABELS,ORG=COLUMNS,TOP=2,RIGHT=3) 1973:11 2007:10 DATES OIL IPI
/* PRE-ESTIMATION */
dec symm[series] hhs(2,2)
clear(zeros) hhs
equation oileq oil
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
equation ipieq ipi
# constant hhs(1,1) hhs(1,2) hhs(2,1) hhs(2,2)
group garchm oileq ipieq
garch(model=garchm,p=1,q=1,mv=BEKK,pmethod=simplex,piters=10,$
mvhseries=hhs)
Code: Select all
MV-GARCH, BEKK - Estimation by BFGS
Convergence in 49 Iterations. Final criterion was 0.0000045 <= 0.0000100
Monthly Data From 1973:11 To 2007:10
Usable Observations 408
Log Likelihood 2106.4402
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 0.0030665 0.0063040 0.48644 0.62665755
2. HHS(1,1) 2.7241851 1.2881911 2.11474 0.03445239
3. HHS(2,1) -58.0674533 21.4759674 -2.70383 0.00685445
4. HHS(2,1) -57.7541027 21.4759760 -2.68924 0.00716144
5. HHS(2,2) -160.8529558 95.2018502 -1.68960 0.09110469
6. Constant 0.0043623 0.0013002 3.35503 0.00079358
7. HHS(1,1) -0.0427378 0.0812831 -0.52579 0.59903456
8. HHS(2,1) -1.9714207 1.7100354 -1.15285 0.24897043
9. HHS(2,1) -1.9022851 1.7100860 -1.11239 0.26596986
10. HHS(2,2) -20.9218211 20.8896361 -1.00154 0.31656546
11. C(1,1) 0.0079456 0.0014138 5.61989 0.00000002
12. C(2,1) 0.0000917 0.0012644 0.07249 0.94221068
13. C(2,2) 0.0028532 0.0013020 2.19145 0.02841922
14. A(1,1) 0.6897016 0.0710530 9.70686 0.00000000
15. A(1,2) 0.0157191 0.0068716 2.28756 0.02216303
16. A(2,1) -0.0791518 0.3584136 -0.22084 0.82521761
17. A(2,2) 0.4041140 0.1105482 3.65555 0.00025663
18. B(1,1) 0.8050431 0.0306167 26.29421 0.00000000
19. B(1,2) -0.0058133 0.0051301 -1.13319 0.25713322
20. B(2,1) -0.1306640 0.3039599 -0.42987 0.66728833
21. B(2,2) 0.7970205 0.1404967 5.67288 0.00000001
Dear TomDoanTomDoan wrote:Because of symmetry H(2,1) and H(1,2) are the same, so you should leave one out of the regressor list. As you have this set up, yes, the effect of the variance of oil on the mean of IP is coefficient 7.
thank you for your replyTomDoan wrote:Just add the ASYMMETRIC option to the GARCH instruction. For QMLE, just add the ROBUSTERRORS option (that's described in the v9 User's Guide in Section 9.3.7).
The test for univariate vs multivariate is very uninteresting. The likelihood for the univariate models doesn't allow for any contemporaneous correlation. Since that is usually rather high (.7 or more), the test will reject overwhelmingly on that basis alone---likelihood ratio statistics on the order of 1000's are fairly common.