Convergence problem MGARCH-BEKK model
Posted: Sat Jul 20, 2013 3:34 pm
Hi Tom,
I am currently using a multivariate GARCH BEKK Model to estimate volatility spillovers between tweets and stock market returns. If I estimate a bivariate GARCH model I get good results. However, I would like to estimate the model with more than two variables, at least more than 5. If I use 5 variables using the exact same code I use for the two (but with more variables of course), it does not converge. If I use 6 variables winRATS shuts down entirely, meaning the program closes itself without giving any output. Can you give me some help regarding this problem? I think the convergence issues might have to do with the fact that I only have about 180 observations, could that be the problem?
I cannot share the data, so I cannot share the program including the excel data file. Instead I will include parts of a copy of the code, sorry for the inconvenience. Hope you can still help.
Many thanks in advance, the copy is included below.
Kind regards,
Myrthe van Dieijen
OPEN DATA "C:\Users\K53SJ-SX247V\Desktop\Twitter_Data_v1.xlsx"
CALENDAR(7) 2009:10:1
DATA(FORMAT=XLSX,ORG=COLUMNS) 2009:10:01 2010:03:30 Abnormal_Returns Returns RETX Tw_Volume_Tweets Tw_Positive_Tweets $
Tw_Negative_Tweets Tw_Neutral_Tweets Tw_Positive_Negative_Ratio_Tweets Tw_Pos_Sub_Neg_Tweets Tw_Subjectivity_Tweets $
Tw_Retweets Tw_Retweet_Vol_Ratio Tw_Volume_TweetsSubRetweets Tw_Positive_Retweets Tw_Negative_Retweets $
Tw_Neutral_Retweets Tw_Positive_Negative_Ratio_Retweets Tw_Pos_Sub_Neg_ReTweets Tw_Subjectivity_Retweets $
Number_Blog_Posts Number_Forum_Posts Number_Print_News Number_Google_Search_Tickers Analyst_Estimates $
Ad_Spend Financial_Events New_Product_Launch Org_Events Comp_Volume_TweetsSubRetweets
@varlagselect(crit=sbc,lags=5)
# Returns Tw_Positive_Tweets Tw_Negative_Tweets Number_Blog_Posts Number_Forum_Posts
VAR Lag Selection
Lags SBC/BIC
0 12194.1363
1 11941.8945*
2 12034.7672
3 12124.2931
4 12226.7282
5 12311.0674
system(model=var1)
variables Returns Tw_Positive_Tweets Tw_Negative_Tweets Number_Blog_Posts Number_Forum_Posts
lags 1
det constant
end(system)
garch(p=1,q=1,model=var1,mv=bekk,rvectors=rd,hmatrices=hh,pmethod=simplex,piters=10,robusterrors)
MV-GARCH, BEKK - Estimation by BFGS
NO CONVERGENCE IN 200 ITERATIONS
LAST CRITERION WAS 0.0000007
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Daily(7) Data From 2009:10:02 To 2010:03:30
Usable Observations 180
Log Likelihood -5903.2640
I am currently using a multivariate GARCH BEKK Model to estimate volatility spillovers between tweets and stock market returns. If I estimate a bivariate GARCH model I get good results. However, I would like to estimate the model with more than two variables, at least more than 5. If I use 5 variables using the exact same code I use for the two (but with more variables of course), it does not converge. If I use 6 variables winRATS shuts down entirely, meaning the program closes itself without giving any output. Can you give me some help regarding this problem? I think the convergence issues might have to do with the fact that I only have about 180 observations, could that be the problem?
I cannot share the data, so I cannot share the program including the excel data file. Instead I will include parts of a copy of the code, sorry for the inconvenience. Hope you can still help.
Many thanks in advance, the copy is included below.
Kind regards,
Myrthe van Dieijen
OPEN DATA "C:\Users\K53SJ-SX247V\Desktop\Twitter_Data_v1.xlsx"
CALENDAR(7) 2009:10:1
DATA(FORMAT=XLSX,ORG=COLUMNS) 2009:10:01 2010:03:30 Abnormal_Returns Returns RETX Tw_Volume_Tweets Tw_Positive_Tweets $
Tw_Negative_Tweets Tw_Neutral_Tweets Tw_Positive_Negative_Ratio_Tweets Tw_Pos_Sub_Neg_Tweets Tw_Subjectivity_Tweets $
Tw_Retweets Tw_Retweet_Vol_Ratio Tw_Volume_TweetsSubRetweets Tw_Positive_Retweets Tw_Negative_Retweets $
Tw_Neutral_Retweets Tw_Positive_Negative_Ratio_Retweets Tw_Pos_Sub_Neg_ReTweets Tw_Subjectivity_Retweets $
Number_Blog_Posts Number_Forum_Posts Number_Print_News Number_Google_Search_Tickers Analyst_Estimates $
Ad_Spend Financial_Events New_Product_Launch Org_Events Comp_Volume_TweetsSubRetweets
@varlagselect(crit=sbc,lags=5)
# Returns Tw_Positive_Tweets Tw_Negative_Tweets Number_Blog_Posts Number_Forum_Posts
VAR Lag Selection
Lags SBC/BIC
0 12194.1363
1 11941.8945*
2 12034.7672
3 12124.2931
4 12226.7282
5 12311.0674
system(model=var1)
variables Returns Tw_Positive_Tweets Tw_Negative_Tweets Number_Blog_Posts Number_Forum_Posts
lags 1
det constant
end(system)
garch(p=1,q=1,model=var1,mv=bekk,rvectors=rd,hmatrices=hh,pmethod=simplex,piters=10,robusterrors)
MV-GARCH, BEKK - Estimation by BFGS
NO CONVERGENCE IN 200 ITERATIONS
LAST CRITERION WAS 0.0000007
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Daily(7) Data From 2009:10:02 To 2010:03:30
Usable Observations 180
Log Likelihood -5903.2640