M-GARCH, Intercepts of Mean Equations = Sample means?
Posted: Sun Mar 08, 2009 8:16 am
I have two series here: y1 and y2.
Before I run the CCC-MGARCH, I calculate the summary statistics.
As shown in the RATS output, both y1 and y2 have a positive mean.
Statistics on Series LGRY1
Observations 4995
Sample Mean 0.000213 Variance 0.000130
Standard Error 0.011407 of Sample Mean 0.000161
t-Statistic (Mean=0) 1.321191 Signif Level 0.186498
Skewness -0.247157 Signif Level (Sk=0) 0.000000
Kurtosis (excess) 9.732904 Signif Level (Ku=0) 0.000000
Jarque-Bera 19766.415021 Signif Level (JB=0) 0.000000
Statistics on Series LGRY2
Observations 4995
Sample Mean 0.000194 Variance 0.003382
Standard Error 0.058156 of Sample Mean 0.000823
t-Statistic (Mean=0) 0.236064 Signif Level 0.813393
Skewness 0.624373 Signif Level (Sk=0) 0.000000
Kurtosis (excess) 4.521144 Signif Level (Ku=0) 0.000000
Jarque-Bera 4578.773622 Signif Level (JB=0) 0.000000
However, when I run the CCC-GARCH, the y2 mean equation’s intercept is negative.
MV_GARCH, CC - Estimation by BFGS
Convergence in 34 Iterations. Final criterion was 0.0000026 <= 0.0000100
Daily(5) Data From 1990:01:03 To 2009:02:24
Usable Observations 4995
Log Likelihood 25474.51984640
Variable Coeff Std Error T-Stat Signif
*******************************************************************************
1. Mean(1) 5.0002e-04 1.0964e-04 4.56081 0.00000510
2. Mean(2) -5.6011e-04 7.6312e-04 -0.73397 0.46296459
3. C(1) 8.6192e-07 1.5316e-07 5.62770 0.00000002
4. C(2) 3.1710e-04 5.4461e-05 5.82244 0.00000001
5. A(1) 0.0580 4.7308e-03 12.25240 0.00000000
6. A(2) 0.0727 9.6523e-03 7.53485 0.00000000
7. B(1) 0.9344 5.6701e-03 164.79332 0.00000000
8. B(2) 0.8314 0.0240 34.68299 0.00000000
9. R(2,1) -0.7232 6.3492e-03 -113.89604 0.00000000
For the two mean equations, I only have the constants, so I expect the two intercepts of the mean equations should be very similar to the sample means of the two series.
What is wrong here?
Before I run the CCC-MGARCH, I calculate the summary statistics.
As shown in the RATS output, both y1 and y2 have a positive mean.
Statistics on Series LGRY1
Observations 4995
Sample Mean 0.000213 Variance 0.000130
Standard Error 0.011407 of Sample Mean 0.000161
t-Statistic (Mean=0) 1.321191 Signif Level 0.186498
Skewness -0.247157 Signif Level (Sk=0) 0.000000
Kurtosis (excess) 9.732904 Signif Level (Ku=0) 0.000000
Jarque-Bera 19766.415021 Signif Level (JB=0) 0.000000
Statistics on Series LGRY2
Observations 4995
Sample Mean 0.000194 Variance 0.003382
Standard Error 0.058156 of Sample Mean 0.000823
t-Statistic (Mean=0) 0.236064 Signif Level 0.813393
Skewness 0.624373 Signif Level (Sk=0) 0.000000
Kurtosis (excess) 4.521144 Signif Level (Ku=0) 0.000000
Jarque-Bera 4578.773622 Signif Level (JB=0) 0.000000
However, when I run the CCC-GARCH, the y2 mean equation’s intercept is negative.
MV_GARCH, CC - Estimation by BFGS
Convergence in 34 Iterations. Final criterion was 0.0000026 <= 0.0000100
Daily(5) Data From 1990:01:03 To 2009:02:24
Usable Observations 4995
Log Likelihood 25474.51984640
Variable Coeff Std Error T-Stat Signif
*******************************************************************************
1. Mean(1) 5.0002e-04 1.0964e-04 4.56081 0.00000510
2. Mean(2) -5.6011e-04 7.6312e-04 -0.73397 0.46296459
3. C(1) 8.6192e-07 1.5316e-07 5.62770 0.00000002
4. C(2) 3.1710e-04 5.4461e-05 5.82244 0.00000001
5. A(1) 0.0580 4.7308e-03 12.25240 0.00000000
6. A(2) 0.0727 9.6523e-03 7.53485 0.00000000
7. B(1) 0.9344 5.6701e-03 164.79332 0.00000000
8. B(2) 0.8314 0.0240 34.68299 0.00000000
9. R(2,1) -0.7232 6.3492e-03 -113.89604 0.00000000
For the two mean equations, I only have the constants, so I expect the two intercepts of the mean equations should be very similar to the sample means of the two series.
What is wrong here?