reading data when list of variables is huge
Posted: Tue Jul 28, 2015 4:08 pm
Hi,
I am trying to do Principal Component Analysis. There are around 103 commodities, but the series window is taking only upto the first 70. So what should I do, how do I ensure that all variables are included before I perform the PCA. RATS is not reading the entire list of variables.
cal(m) 1981:4
open data pca.xls
data(format=xls,org=cols) 1981:4 2014:9 AL PR FA FG CR RI WH JW BJ M BL RG PU G AR MN MA UR FV V PO SP ON TA GN PEA TA CA FR BA MNG AP OR CSHW CNT PAP GRP MLK EMF EG FIS MUT CHK PRK SP BP CH TU CM DRGN BNT CUM GRL OFA TEA COF NFART FP MNPR FDP DP BU GH PM CANN CF GRNM MD SO AT WB BK CK BRD SKG SU KH GU SL SC EO V GNO MST GR CTN RBO OILC MOC GROC CTO TCP TLF CPWD OFP BT WN ML SCW TXT
Also I am using RATS for the first time for PCA. So this is how I am doing. I hope this is correct.
vcv(center,matrix=r)
#AL PR FA FG CR RI WH JW BJ M BL RG PU G AR MN MA UR FV V PO SP ON TA GN PEA TA CA FR BA MNG AP OR CSHW CNT PAP GRP MLK EMF EG FIS MUT CHK PRK SP BP CH TU CM DRGN BNT CUM GRL OFA TEA COF NFART FP MNPR FDP DP BU GH PM CANN CF GRNM MD SO AT WB BK CK BRD SKG SU KH GU SL SC EO V GNO MST GR CTN RBO OILC MOC GROC CTO TCP TLF CPWD OFP BT WN ML SCW TXT
@prinfactors(print) r
@prinfactors(print,values=evalues) %cvtocorr(r)
set eigen 1 2 = evalues(t)
graph(style=symbols,vlabel="Eigenvalue",hlabel="Component",nodates)
#eigen
I am trying to do Principal Component Analysis. There are around 103 commodities, but the series window is taking only upto the first 70. So what should I do, how do I ensure that all variables are included before I perform the PCA. RATS is not reading the entire list of variables.
cal(m) 1981:4
open data pca.xls
data(format=xls,org=cols) 1981:4 2014:9 AL PR FA FG CR RI WH JW BJ M BL RG PU G AR MN MA UR FV V PO SP ON TA GN PEA TA CA FR BA MNG AP OR CSHW CNT PAP GRP MLK EMF EG FIS MUT CHK PRK SP BP CH TU CM DRGN BNT CUM GRL OFA TEA COF NFART FP MNPR FDP DP BU GH PM CANN CF GRNM MD SO AT WB BK CK BRD SKG SU KH GU SL SC EO V GNO MST GR CTN RBO OILC MOC GROC CTO TCP TLF CPWD OFP BT WN ML SCW TXT
Also I am using RATS for the first time for PCA. So this is how I am doing. I hope this is correct.
vcv(center,matrix=r)
#AL PR FA FG CR RI WH JW BJ M BL RG PU G AR MN MA UR FV V PO SP ON TA GN PEA TA CA FR BA MNG AP OR CSHW CNT PAP GRP MLK EMF EG FIS MUT CHK PRK SP BP CH TU CM DRGN BNT CUM GRL OFA TEA COF NFART FP MNPR FDP DP BU GH PM CANN CF GRNM MD SO AT WB BK CK BRD SKG SU KH GU SL SC EO V GNO MST GR CTN RBO OILC MOC GROC CTO TCP TLF CPWD OFP BT WN ML SCW TXT
@prinfactors(print) r
@prinfactors(print,values=evalues) %cvtocorr(r)
set eigen 1 2 = evalues(t)
graph(style=symbols,vlabel="Eigenvalue",hlabel="Component",nodates)
#eigen