No convergence in Bivariate GARCH in Mean
Posted: Tue Jun 29, 2021 2:28 pm
Hi,
I am trying to estimate a Bivariate GARCH in mean model. However, on running my code I receive warnings about non-convergence. I tried changing the NLPAR DERIVE option, but that does not help either. I do obtain some results that seem reasonable. However, I am worried that results of a procedure that did not converge cannot be trusted. Does this mean my model is mis-specified and I should not attempt this any further? Or are there other techniques I could try to see if converge might be possible?
I am a beginner with Estima and time series analysis. I really appreciate your help!
Here is my code and results follow:
Results:
MV-GARCH - Estimation by BFGS
NO CONVERGENCE IN 31 ITERATIONS. FINAL NORMED GRADIENT 8.18552e+06
SUBITERATIONS LIMIT EXCEEDED.
ESTIMATION POSSIBLY HAS STALLED OR MACHINE ROUNDOFF IS MAKING FURTHER PROGRESS DIFFICULT
TRY DIFFERENT SETTING FOR EXACTLINE, DERIVES OR ALPHA ON NLPAR
RESTARTING ESTIMATION FROM LAST ESTIMATES OR DIFFERENT INITIAL GUESSES/PMETHOD OPTION MIGHT ALSO WORK
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Monthly Data From 1994:03 To 2012:03
Usable Observations 217
Log Likelihood 308.7726
Variable Coeff Std Error T-Stat Signif
************************************************************************************
Mean Model(LRETWHOL)
1. Constant 0.016795929 0.005943597 2.82589 0.00471500
2. LRETWHOL{1} 0.843657376 0.092240734 9.14626 0.00000000
3. JAN -0.018657679 0.043054799 -0.43335 0.66476251
4. FEB -0.061768898 0.002458309 -25.12658 0.00000000
5. MAR -0.043817700 0.004232173 -10.35348 0.00000000
6. APR -0.178501023 0.084978859 -2.10053 0.03568185
7. MAY -0.036835938 0.021144052 -1.74214 0.08148362
8. JUN 0.066045570 0.056060967 1.17810 0.23875572
9. JUL 0.037410851 0.014751110 2.53614 0.01120826
10. AUG 0.034110637 0.012366412 2.75833 0.00580976
11. SEP -0.028987974 0.019682424 -1.47278 0.14080907
12. OCT 0.016778320 0.060089462 0.27922 0.78007420
13. NOV -0.004088396 0.053538906 -0.07636 0.93913023
14. HH(1,1) 0.044017910 0.049533632 0.88865 0.37419286
15. HH(2,2) -0.037047509 0.058280055 -0.63568 0.52498453
16. Mvg Avge{1} -1.039173631 0.035188864 -29.53132 0.00000000
Mean Model(LRETRETAIL)
17. Constant 0.071590141 0.003703160 19.33217 0.00000000
18. LRETRETAIL{1} 0.015752674 0.280699939 0.05612 0.95524680
19. JAN -0.038112598 0.090585776 -0.42073 0.67394867
20. FEB -0.033556303 0.039514021 -0.84923 0.39575599
21. MAR -0.067200707 0.036495555 -1.84134 0.06557182
22. APR -0.200183210 0.030196695 -6.62931 0.00000000
23. MAY -0.252802905 0.067919895 -3.72207 0.00019759
24. JUN -0.108717566 0.094968789 -1.14477 0.25230381
25. JUL -0.089065842 0.023421454 -3.80275 0.00014310
26. AUG -0.002311902 0.024483050 -0.09443 0.92476864
27. SEP -0.079614313 0.038456514 -2.07024 0.03842963
28. OCT -0.023089596 0.027946924 -0.82619 0.40869375
29. NOV -0.023471318 0.060267552 -0.38945 0.69694181
30. HH(1,1) 0.046407525 0.171942298 0.26990 0.78723585
31. HH(2,2) -0.110233626 0.354073360 -0.31133 0.75554984
32. Mvg Avge{1} 0.036228203 0.045175139 0.80195 0.42258188
33. C(1,1) 0.002942715 0.002517999 1.16867 0.24253584
34. C(2,1) 0.002261555 0.001002961 2.25488 0.02414103
35. C(2,2) 0.002640079 0.002503963 1.05436 0.29171808
36. A(1,1) 0.215992843 0.130728865 1.65222 0.09848972
37. A(2,1) -0.028035274 0.209533807 -0.13380 0.89356205
38. A(2,2) 0.180931544 0.067079669 2.69726 0.00699119
39. B(1,1) 0.677695570 0.036928152 18.35173 0.00000000
40. B(2,1) -0.338726114 0.621624229 -0.54490 0.58581890
41. B(2,2) 0.592921252 0.101640357 5.83352 0.00000001
I am trying to estimate a Bivariate GARCH in mean model. However, on running my code I receive warnings about non-convergence. I tried changing the NLPAR DERIVE option, but that does not help either. I do obtain some results that seem reasonable. However, I am worried that results of a procedure that did not converge cannot be trusted. Does this mean my model is mis-specified and I should not attempt this any further? Or are there other techniques I could try to see if converge might be possible?
I am a beginner with Estima and time series analysis. I really appreciate your help!
Here is my code and results follow:
Code: Select all
* Declare the series to store conditional variances
dec symm[series] hh(2,2)
clear(zeroes) hh
* wholesale mz equation
equation(ar=1,ma=1,constant,regressors) eq_whol lretwhol
# jan feb mar apr may jun jul aug sep oct nov hh(1,1) hh(2,2)
* retail mz equation
equation(ar=1,ma=1,constant,regressors) eq_retail lretretail
# jan feb mar apr may jun jul aug sep oct nov hh(1,1) hh(2,2)
group meanmodel eq_whol eq_retail
* Bivariate GARCH in mean
garch(model=meanmodel,p=1,q=1,robusterrors,mvhseries=hh,pmethod=simplex,piters=10)
MV-GARCH - Estimation by BFGS
NO CONVERGENCE IN 31 ITERATIONS. FINAL NORMED GRADIENT 8.18552e+06
SUBITERATIONS LIMIT EXCEEDED.
ESTIMATION POSSIBLY HAS STALLED OR MACHINE ROUNDOFF IS MAKING FURTHER PROGRESS DIFFICULT
TRY DIFFERENT SETTING FOR EXACTLINE, DERIVES OR ALPHA ON NLPAR
RESTARTING ESTIMATION FROM LAST ESTIMATES OR DIFFERENT INITIAL GUESSES/PMETHOD OPTION MIGHT ALSO WORK
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Monthly Data From 1994:03 To 2012:03
Usable Observations 217
Log Likelihood 308.7726
Variable Coeff Std Error T-Stat Signif
************************************************************************************
Mean Model(LRETWHOL)
1. Constant 0.016795929 0.005943597 2.82589 0.00471500
2. LRETWHOL{1} 0.843657376 0.092240734 9.14626 0.00000000
3. JAN -0.018657679 0.043054799 -0.43335 0.66476251
4. FEB -0.061768898 0.002458309 -25.12658 0.00000000
5. MAR -0.043817700 0.004232173 -10.35348 0.00000000
6. APR -0.178501023 0.084978859 -2.10053 0.03568185
7. MAY -0.036835938 0.021144052 -1.74214 0.08148362
8. JUN 0.066045570 0.056060967 1.17810 0.23875572
9. JUL 0.037410851 0.014751110 2.53614 0.01120826
10. AUG 0.034110637 0.012366412 2.75833 0.00580976
11. SEP -0.028987974 0.019682424 -1.47278 0.14080907
12. OCT 0.016778320 0.060089462 0.27922 0.78007420
13. NOV -0.004088396 0.053538906 -0.07636 0.93913023
14. HH(1,1) 0.044017910 0.049533632 0.88865 0.37419286
15. HH(2,2) -0.037047509 0.058280055 -0.63568 0.52498453
16. Mvg Avge{1} -1.039173631 0.035188864 -29.53132 0.00000000
Mean Model(LRETRETAIL)
17. Constant 0.071590141 0.003703160 19.33217 0.00000000
18. LRETRETAIL{1} 0.015752674 0.280699939 0.05612 0.95524680
19. JAN -0.038112598 0.090585776 -0.42073 0.67394867
20. FEB -0.033556303 0.039514021 -0.84923 0.39575599
21. MAR -0.067200707 0.036495555 -1.84134 0.06557182
22. APR -0.200183210 0.030196695 -6.62931 0.00000000
23. MAY -0.252802905 0.067919895 -3.72207 0.00019759
24. JUN -0.108717566 0.094968789 -1.14477 0.25230381
25. JUL -0.089065842 0.023421454 -3.80275 0.00014310
26. AUG -0.002311902 0.024483050 -0.09443 0.92476864
27. SEP -0.079614313 0.038456514 -2.07024 0.03842963
28. OCT -0.023089596 0.027946924 -0.82619 0.40869375
29. NOV -0.023471318 0.060267552 -0.38945 0.69694181
30. HH(1,1) 0.046407525 0.171942298 0.26990 0.78723585
31. HH(2,2) -0.110233626 0.354073360 -0.31133 0.75554984
32. Mvg Avge{1} 0.036228203 0.045175139 0.80195 0.42258188
33. C(1,1) 0.002942715 0.002517999 1.16867 0.24253584
34. C(2,1) 0.002261555 0.001002961 2.25488 0.02414103
35. C(2,2) 0.002640079 0.002503963 1.05436 0.29171808
36. A(1,1) 0.215992843 0.130728865 1.65222 0.09848972
37. A(2,1) -0.028035274 0.209533807 -0.13380 0.89356205
38. A(2,2) 0.180931544 0.067079669 2.69726 0.00699119
39. B(1,1) 0.677695570 0.036928152 18.35173 0.00000000
40. B(2,1) -0.338726114 0.621624229 -0.54490 0.58581890
41. B(2,2) 0.592921252 0.101640357 5.83352 0.00000001