RATS 11.1
RATS 11.1

Procedures /

APGRADIENTTEST Procedure

Home Page

← Previous Next →

@APGRADIENTTEST applies the Andrews and Ploberger(1994) change point analysis to a more general type of model than the linear regression than the @APBreakTest procedure allows. The input to this are the series of gradients from maximum likelihood estimation. These can be fetched using the DERIVES option on instructions like MAXIMIZE or GARCH.


@APGRADIENTTEST( options )   start end

# list of derivative series

Parameters

start, end

range for test. By default, the common range of the list of derivative series.

Options

PI=fraction of entries on ends of sample not examined as break points [.15]

This is written assuming PI is .15. A different "pi" value than .15 would require a different table of entries to compute the approximate p-values.

 

GRAPH/[NOGRAPH]

If GRAPH, the procedure produces a time-series graph of the breakpoint test statistics.

 

[PRINT]/NOPRINT

TITLE="title for output" ["Andrews-Ploberger Break Tests"]

Variables Defined

All are for the test on the full coefficient vector

 

%%BREAKPOINT

Entry with largest break test (INTEGER)

%%AQTEST

Andrews-Quandt test statistic (REAL)

%%APTEST

Andrews-Ploberger test statistic (REAL)

%%AQSIGNIF

Approximate significance value for AQ test (REAL)

%%APSIGNIF

Approximate significance value for AP test (INTEGER)

Example

This estimates a GARCH model, saving the derivatives and tests for breaks.

 

garch(p=1,q=1,hseries=hh11,derives=dd) / dlogdm

@apgradienttest(graph)

# dd

Sample Output

This starts with the output from the GARCH, since the order of the parameters in the test output is the same as on the GARCH.

 

GARCH Model - Estimation by BFGS

Convergence in    16 Iterations. Final criterion was  0.0000027 <=  0.0000100

Dependent Variable DLOGDM

Usable Observations                      1866

Log Likelihood                     -2068.1265

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean                         -0.020636536  0.015553819     -1.32678  0.18458061

2.  C                             0.016180183  0.005554235      2.91313  0.00357831

3.  A                             0.110126014  0.016373820      6.72574  0.00000000

4.  B                             0.868369483  0.020232859     42.91877  0.00000000


 

    Andrews-Quandt                Andrews-Ploberger

      Test      P-Val     Date      Test      P-Val

1   12.982939     0.007      1296  3.623850     0.006

2    7.320293     0.090      1009  1.372721     0.117

3    3.224171     0.509      1296  0.518863     0.426

4    3.439964     0.468      1292  0.648551     0.341

All 18.171710     0.024      1296  5.499561     0.036

 

This indicates that there may be a problem with the mean of the model, which is the only parameter that shows a significant break.

 

 

 


Copyright © 2026 Thomas A. Doan