RATS 10.1
RATS 10.1

CDF( options )   distribution statistic degree1 degree2

Computes the marginal significance level of a statistic from one of four distributions.

Parameters

distribution

Choose from FTEST, TTEST, CHISQ, or NORMAL. Selects the distribution to use for the computation. The significance levels for TTEST and NORMAL are both for two-tailed tests.

statistic

the test statistic

degree1

degrees of freedom (TTEST, CHISQ), numerator degrees of freedom (FTEST)

degree2

denominator degrees of freedom (FTEST)

Options

[PRINT]/NOPRINT

TITLE="title for output" [none]

Variables Defined

%CDSTAT

the computed test statistic (REAL)

%SIGNIF

the marginal significance level (REAL)

Notes

CDF is a convenient way to display the significance level, but all the four distributions have functions (shown below) which compute those as well, so you can display the result some other way, such as with a DISPLAY or REPORT.


 

Examples

These are from two of the standard examples. Note that the statistic parameter can be an expression rather than just a variable, although both of these compute and save that. For instance, the end of the second example could be written:

 

cdf(title="LR Test for Children in School Dummies") chisqr 2*(logunres-logres) 4


 

*

* CHOW1.RPF

* Chow test by subsample regressions

*

open data states.wks

data(org=col,format=wks) 1 50 expend pcaid pop pcinc

set pcexp = expend/pop

*

linreg(smpl=pop<5000) pcexp

# constant pcaid pcinc

compute  rsssmall=%rss , ndfsmall=%ndf

*

linreg(smpl=pop>=5000) pcexp

# constant pcaid pcinc

compute  rsslarge=%rss , ndflarge=%ndf

*

* Full sample regression

*

linreg pcexp

# constant pcaid pcinc

compute   rsspool=%rss

*

compute  rssunr=rsssmall+rsslarge , ndfunr=ndfsmall+ndflarge

compute  fstat = ( (rsspool-rssunr)/3 ) / (rssunr/ndfunr)

cdf(title="Chow test for difference in large vs small")  ftest fstat 3 ndfunr


 


 

*

* PROBIT.RPF

*

open data probit.dat

data(org=obs) 1 95 public1_2 public3_4 public5 private $

   years teacher loginc logproptax yesvm

*

*  Linear probability model

*

linreg yesvm

# constant public1_2 public3_4 public5 private years teacher loginc logproptax

*

ddv(dist=logit) yesvm

# constant public1_2 public3_4 public5 private years teacher loginc logproptax

ddv(dist=probit) yesvm

# constant public1_2 public3_4 public5 private years teacher loginc logproptax

*

*  Test whether "Children in School" dummies are significant.

*  Use "Wald" test first.

*

exclude(title="Wald Test of Children in School Dummies")

# public1_2 public3_4 public5 private

*

*  Likelihood ratio test. We already have the unrestricted model.

*

compute logunres = %logl

*

ddv(dist=probit) yesvm

# constant years teacher loginc logproptax

compute logres=%logl

*

*

compute lratio=2*(logunres-logres)

cdf(title="LR Test for Children in School Dummies") chisqr lratio 4

Sample Output

LR Test for Children in School Dummies

Chi-Squared(4)=      6.051680 with Significance Level 0.19532186


Copyright © 2025 Thomas A. Doan