RATS 10.1
RATS 10.1

ARCH-M models (Engle, Lilien, Robins(1987)) generalize the ARCH model by allowing a function of the variance to enter the mean model. The most common form of this uses the variance itself as a regressor. You can estimate an ARCH-M or GARCH-M model by using the special name %GARCHV among the regressors. This refers to the variance generated by the model. It behaves like a series, so you can include lags of it with the standard {...} notation. To add the current variance to an AR(1)-GARCH(1,1) model:

 

garch(p=1,q=1,regressors) / dlogdm

# constant dlogdm{1} %garchv

 

It’s important to note that if there is no “GARCH” there is no “M”—if the GARCH effect is weak, the GARCH variance is nearly constant so the “M” effect isn't identified.

Output

The built-in %GARCHV variable shows as GARCH-V in the output.

 

GARCH Model - Estimation by BFGS

Convergence in    22 Iterations. Final criterion was  0.0000000 <=  0.0000100

 

Dependent Variable DLOGDM

Usable Observations                      1865

Log Likelihood                     -2058.8758

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -0.099950530  0.030934238     -3.23106  0.00123330

2.  DLOGDM{1}                    -0.084561360  0.024189202     -3.49583  0.00047259

3.  GARCH-V                       0.160554894  0.056244288      2.85460  0.00430912

 

4.  C                             0.015099945  0.004519612      3.34098  0.00083483

5.  A                             0.108470775  0.016668724      6.50744  0.00000000

6.  B                             0.871554313  0.018356944     47.47818  0.00000000

 


Copyright © 2025 Thomas A. Doan