RATS 10.1
RATS 10.1

We can rearrange the GARCH(1,1) model as

\begin{equation} h_t = c_0 + a_1 \left( {u_{t - 1}^2 - h_{t - 1} } \right) + (a_1 + b_1 )h_{t - 1} \end{equation}

where (if the model is correct) the \(a_1\) term now has expected value zero. So \(a_1 + b_1\) is the proper measure of the persistence of volatility. In the IGARCH model (Nelson (1990)), this is constrained to be one. In general, for a GARCH(p,q) model the restriction is

\begin{equation} a_1 + a_2 + \ldots + a_q + b_1 + \ldots + b_p = 1 \label{eq:garch_igarchgeneral} \end{equation}

To estimate an IGARCH model, include the I=NODRIFT or I=DRIFT option on GARCH. I=NODRIFT imposes the constraint \eqref{eq:garch_igarchgeneral} and zeros out the constant \(c_0\) in the variance equation. I=DRIFT also imposes \eqref{eq:garch_igarchgeneral} but leaves the constant free. This can be added as an option to ARCH, GARCH and EGARCH models (for EGARCH, it constrains only the sum of the \(b\)’s).

 

To estimate an IGARCH(1,1) model (without variance drift), use

 

garch(p=1,q=1,i=nodrift) / dlogdm

 

Output

IGARCH Model - Estimation by BFGS

Convergence in    17 Iterations. Final criterion was  0.0000000 <=  0.0000100

 

Dependent Variable DLOGDM

Usable Observations                      1866

Log Likelihood                     -2088.7331

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(DLOGDM)                 -0.018534067  0.015549141     -1.19197  0.23327407

2.  C                             0.000000000  0.000000000      0.00000  0.00000000

3.  A                             0.082104140  0.008813022      9.31623  0.00000000

4.  B                             0.917895860  0.008813022    104.15223  0.00000000

 

The C is included in the output even though it is forced to be zero by the option. A and B have identical standard errors because they are constrained to sum to 1.


Copyright © 2025 Thomas A. Doan