RATS 10.1
RATS 10.1

GARCHDECO.RPF estimates a multivariate GARCH with DECO estimator. DECO (Dynamic Equicorrelation) is from Engle and Kelly(2011).


Full Program

 

all 6237
open data g10xrate.xls
data(format=xls,org=columns) / usxjpn usxfra usxsui usxnld usxuk usxbel usxger usxcan
*
compute n=8
dec vect[series] x(n)
compute i=0
dofor [string] s = 'jpn' 'fra' 'sui' 'nld' 'uk' 'bel' 'ger' 'can'
   compute xrate='usx'+s,i=i+1
   set x(i) = 100.0*log(%s(xrate)/%s(xrate){1})
end dofor
*
dec vect[series] eps(n)
*
* Do univariate GARCH models. Save the standardized residuals into
* eps(i). Copy the coefficients into the proper slots in the full beta
* matrix.
*
do i=1,n
   garch(p=1,q=1,resids=r,hseries=h) / x(i)
   set eps(i) = r/sqrt(h)
end do i
*
* Compute the covariance matrix of the standardized residuals.
*
vcv(matrix=rr,nocenter,noprint)
# eps
*
* When "dotted" with a correlation matrix, the "summer" matrix will
* compute the average of the pairwise correlations.
*
dec symm summer(n,n)
ewise summer(i,j)=1.0/(n*(n-1))*(i<>j)
*
* Create a series for the sequential estimates of rho. This is
* initialized to an estimate of rho given the full data set. (Not really
* necessary to do the latter).
*
compute rhox=%dot(summer,%cvtocorr(rr))
set rho = rhox
*
* Set the target matrix to the equicorrelated estimate using the full
* sample.
*
ewise rr(i,j)=%if(i==j,1.0,rhox)
*
* Create the series[symm] uu (outer product of residuals). Make
* it the unconditional value prior to the sample.
*
dec series[symm] uu q
gset uu %regstart() %regend() = %outerxx(%xt(eps,t))
gset uu 1 %regstart()-1 = rr
gset q  = rr
*
* Compute the sums across i at t needed later
*
set sumsq = %sum(%xt(eps,t).^2)
set sqsum = %sum(%xt(eps,t))^2
*
* Log likelihood for the DECO phase, taking the standardized residuals
* as given.
*
nonlin a b
dec frml[symm] qf
frml qf   = (qx=(1-a-b)*rr+a*uu{1}+b*q{1})
frml logl = q=qf,rho=%dot(summer,%cvtocorr(qx)),-.5*$
  (n*log(2*%pi)+(n-1)*log(1-rho)+log(1+(n-1)*rho)+1.0/(1-rho)*(sumsq-rho/(1+(n-1)*rho)*sqsum))
compute b=.80,a=.10
maximize logl 2 *

Output

 

GARCH Model - Estimation by BFGS

Convergence in    22 Iterations. Final criterion was  0.0000005 <=  0.0000100

Dependent Variable X(1)

Usable Observations                      6236

Log Likelihood                     -5395.4384

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(1))                   0.0001885386 0.0062775497      0.03003  0.97604010

2.  C                            0.0074286872 0.0010353824      7.17482  0.00000000

3.  A                            0.1762878700 0.0115016083     15.32724  0.00000000

4.  B                            0.8372682877 0.0091693967     91.31116  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    31 Iterations. Final criterion was  0.0000033 <=  0.0000100

Dependent Variable X(2)

Usable Observations                      6236

Log Likelihood                     -5648.7083

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(2))                   -0.001465587  0.006217492     -0.23572  0.81364996

2.  C                             0.008578832  0.001469955      5.83612  0.00000001

3.  A                             0.112627522  0.009253236     12.17169  0.00000000

4.  B                             0.878200227  0.009995168     87.86248  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    31 Iterations. Final criterion was  0.0000046 <=  0.0000100

Dependent Variable X(3)

Usable Observations                      6236

Log Likelihood                     -6685.4346

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(3))                   0.0034505248 0.0079161530      0.43588  0.66292087

2.  C                            0.0110980759 0.0020278143      5.47293  0.00000004

3.  A                            0.0969338848 0.0083271346     11.64073  0.00000000

4.  B                            0.8887829993 0.0099051503     89.72938  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    25 Iterations. Final criterion was  0.0000068 <=  0.0000100

Dependent Variable X(4)

Usable Observations                      6236

Log Likelihood                     -5789.4720

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(4))                   0.0005406786 0.0079768493      0.06778  0.94595999

2.  C                            0.0052069296 0.0016900244      3.08098  0.00206321

3.  A                            0.0581595698 0.0077739740      7.48132  0.00000000

4.  B                            0.9313458759 0.0108410205     85.90943  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    21 Iterations. Final criterion was  0.0000015 <=  0.0000100

Dependent Variable X(5)

Usable Observations                      6236

Log Likelihood                     -5334.9891
 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(5))                   -0.004613776  0.006587678     -0.70036  0.48369972

2.  C                             0.005767246  0.000798804      7.21985  0.00000000

3.  A                             0.079810124  0.007662257     10.41601  0.00000000

4.  B                             0.909067819  0.007912629    114.88822  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    24 Iterations. Final criterion was  0.0000094 <=  0.0000100

Dependent Variable X(6)

Usable Observations                      6236

Log Likelihood                     -5893.0269
 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(6))                   0.0017002258 0.0073343143      0.23182  0.81667941

2.  C                            0.0169073691 0.0026170997      6.46035  0.00000000

3.  A                            0.1018532208 0.0112012630      9.09301  0.00000000

4.  B                            0.8650936238 0.0144946210     59.68377  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    24 Iterations. Final criterion was  0.0000050 <=  0.0000100

Dependent Variable X(7)

Usable Observations                      6236

Log Likelihood                     -5936.7270

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(7))                   0.0027233373 0.0074853689      0.36382  0.71599139

2.  C                            0.0124347245 0.0027168401      4.57691  0.00000472

3.  A                            0.0853711124 0.0102944434      8.29293  0.00000000

4.  B                            0.8899813423 0.0147890876     60.17825  0.00000000


 

GARCH Model - Estimation by BFGS

Convergence in    27 Iterations. Final criterion was  0.0000086 <=  0.0000100

Dependent Variable X(8)

Usable Observations                      6236

Log Likelihood                       410.0677

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(X(8))                   -0.002972048  0.002491112     -1.19306  0.23284568

2.  C                             0.001021214  0.000203662      5.01425  0.00000053

3.  A                             0.118678672  0.010276661     11.54837  0.00000000

4.  B                             0.874322435  0.010877249     80.38084  0.00000000


 

MAXIMIZE - Estimation by BFGS

Convergence in    12 Iterations. Final criterion was  0.0000021 <=  0.0000100

Usable Observations                      6236

Function Value                    -56172.2808
 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  A                            0.0354644470 0.0021814312     16.25742  0.00000000

2.  B                            0.9528679422 0.0029977048    317.86583  0.00000000


 


Copyright © 2024 Thomas A. Doan