Statistics and Algorithms / Probability Distributions / Generalized Pareto |
Parameters |
tail index \(\xi\), llocation parameter \(\mu\), and scale parameter \(\sigma\) |
Kernel |
\(\frac{1}{\sigma }\left( {1 + \frac{{\xi \left( {x - \mu } \right)}}{\sigma }} \right)^{\left( { - \frac{1}{\xi } - 1} \right)} \) |
Support |
\(x \ge \mu\) if \(\xi \ge 0\) \(\mu \le x \le \mu - \sigma / \xi\) if \(\xi < 0\) |
Mean |
\(\mu + \frac{\sigma }{{1 - \xi }}\) if \(\xi > 1\) |
Variance |
\(\frac{{\sigma ^2 }}{{(1 - \xi )^2 (1 - 2\xi )}}\) if \(\xi > 1/2\) |
Main Uses |
Calculation of tail probabilities |
Density Function |
%loggpdensity(x,xi,mu,sigma) is the log density at x given parameters \(\xi\), \(\mu\) and \(\sigma\) |
CDF |
%gpcdf(x,xi,mu,sigma) is the CDF of x given parameters \(\xi\), \(\mu\) and \(\sigma\)
%invgp(p,xi,mu,sigma\) is the inverse CDF of p given \(\xi\), \(\mu\) and \(\sigma\) |
Copyright © 2025 Thomas A. Doan