|
Examples / MULTIPLEBREAKS.RPF |
MULTIPLEBREAKS.RPF is an example of the use of the @MULTIPLEBREAKS procedure for analyzing multiple (>1) break in a linear regression based upon a threshold value other than time. This uses the same algorithm as @BAIPERRON which is for analyzing multiple structural breaks (based upon time).
The example is based upon the example from Hansen(1996). It first uses the @TAR procedure to analyze a (one-break) threshold autoregression. Then uses the threshold series (lag two of the dependent variable) to examine up to three breaks on the same model (an autoregression with CONSTANT on lags 1, 2 and 5).
The output from @TAR is at the top. This has a much better established literature than the same with more than one break, and includes formal tests (three variants) of the single threshold effect. The break value is the same as the one-break value generated by @MULTIPLEBREAKS (it's just rounded to four decimals). The evidence in favor of even a single break in the TAR isn't particularly strong—only one of the three test variants is even slightly significant at the .05 level. So it isn't a surprise that no breaks is (slightly) favored over one break in the multiple break point analysis.
Full Program
open data gnp.asc
calendar(q) 1947
data(format=free,org=columns) 1947:01 1990:03 gnp dontknow
*
set ggrowth = log(gnp/gnp{1})*400.0
*
@tar(laglist=||1,2,5||,nreps=1000) ggrowth
set lagtwo = ggrowth{2}
@multiplebreaks(thresh=lagtwo,max=3) ggrowth
# constant ggrowth{1 2 5}
Output
Threshold Autoregression
Threshold is GGROWTH{2}=0.0126
Tests for Threshold Effect use 1000 draws
SupLM 18.244777 P-value 0.046000
ExpLM 4.768378 P-value 0.088000
AveLM 4.564716 P-value 0.307000
Variable Full Sample <=Thresh >Thresh
Constant 1.992255 -3.212555 2.141862
( 0.478946) ( 1.672070) ( 0.638545)
GGROWTH{1} 0.317537 0.512781 0.300854
( 0.077048) ( 0.183042) ( 0.079967)
GGROWTH{2} 0.131979 -0.926923 0.184844
( 0.076781) ( 0.347333) ( 0.108861)
GGROWTH{5} -0.086963 0.384457 -0.158135
( 0.071641) ( 0.202972) ( 0.070146)
Observations 169 38 131
SEESQ 15.960496 23.533054 12.143010
Linear Regression - Estimation by Least Squares
Dependent Variable GGROWTH
Quarterly Data From 1948:03 To 1990:03
Usable Observations 169
Degrees of Freedom 165
Centered R^2 0.1628153
R-Bar^2 0.1475938
Uncentered R^2 0.4528378
Mean of Dependent Variable 3.1410076234
Std Error of Dependent Variable 4.3271293927
Standard Error of Estimate 3.9950589009
Sum of Squared Residuals 2633.4817776
Regression F(3,165) 10.6964
Significance Level of F 0.0000018
Log Likelihood -471.8514
Durbin-Watson Statistic 1.9623
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 1.992254876 0.478945795 4.15967 0.00005115
2. GGROWTH{1} 0.317536956 0.077047985 4.12129 0.00005952
3. GGROWTH{2} 0.131978784 0.076780857 1.71890 0.08750766
4. GGROWTH{5} -0.086962975 0.071640801 -1.21387 0.22653010
Multiple Change Point Analysis
Dependent Variable GGROWTH
Threshold Variable LAGTWO
# Breaks RSS BIC Break Values
0 2633.4817776 2.86758113*
1 2342.2860873 2.87181942 0.012572093
2 2113.4355876 2.89042459 -1.859113332 0.012572093
3 1934.9685629 2.92361853 -1.859113332 0.012572093 2.337910891
Copyright © 2026 Thomas A. Doan