RATS 10.1
RATS 10.1

MV=CC gives you the Constant Correlation specification. The covariances are given by

\begin{equation} H_{ij,t} = R_{ij} \sqrt {H_{ii,t} {\kern 1pt} {\kern 1pt} H_{jj,t} } \end{equation}

where the off-diagonal (lower triangular) elements of \(\bf{R}\) are estimated parameters. The default variance model (governed by the VARIANCES option) is a simple univariate GARCH model which takes the form

\begin{equation} {H_{ii,t}} = {c_i} + {a_i}u_{i,t - 1}^2 + {b_i}{H_{ii,t - 1}} \end{equation}

In GARCHMV.RPF the example of CC is:

 

garch(p=1,q=1,mv=cc) / xjpn xfra xsui

 

The output from CC has the mean model first, then the coefficients for the variance models, then the coefficients from the correlation matrix. Only the off-diagonal of the constant correlation \({\bf{R}}\) matrix needs to be estimated, since it's symmetric with ones on the diagonal. In the output, R(i,j) is the correlation between the residuals for variables i and j.

Output Example

MV-CC GARCH  - Estimation by BFGS

Convergence in    47 Iterations. Final criterion was  0.0000099 <=  0.0000100

Usable Observations                      6236

Log Likelihood                    -12817.3747

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(XJPN)                   -0.000775585  0.007081544     -0.10952  0.91278842

2.  Mean(XFRA)                   -0.004266997  0.007222367     -0.59080  0.55465240

3.  Mean(XSUI)                    0.003648561  0.008713667      0.41872  0.67542294

 

4.  C(1)                          0.016827996  0.002079419      8.09264  0.00000000

5.  C(2)                          0.028385668  0.002678169     10.59891  0.00000000

6.  C(3)                          0.032306057  0.003053511     10.57997  0.00000000

7.  A(1)                          0.164130916  0.011353043     14.45700  0.00000000

8.  A(2)                          0.133203602  0.008892333     14.97960  0.00000000

9.  A(3)                          0.112696962  0.007653219     14.72543  0.00000000

10. B(1)                          0.812634601  0.012102769     67.14452  0.00000000

11. B(2)                          0.804346693  0.012209911     65.87654  0.00000000

12. B(3)                          0.831322084  0.010479082     79.33158  0.00000000

13. R(2,1)                        0.564320088  0.008522088     66.21852  0.00000000

14. R(3,1)                        0.579295504  0.008318390     69.64034  0.00000000

15. R(3,2)                        0.828697594  0.003977519    208.34536  0.00000000
 


Copyright © 2024 Thomas A. Doan