Examples / SIMULEST.RPF |
SIMULEST.RPF is an example of estimation of a simultaneous equations model using all of the main techniques (2SLS, 3SLS, LIML, FIML).
The base model is taken from Pindyck and Rubinfeld (1998), p. 390. Their model is
\(\begin{array}{l} {C_t} = {\alpha _C} + {\beta _C}{\kern 1pt} {Y_t} + {\gamma _C}{C_{t - 1}} + {u_{{\kern 1pt} Ct}}{\kern 1pt} \\ {I_t} = {\alpha _I} + {\beta _I}\left( {{Y_{t - 1}} - {Y_{t - 2}}} \right) + {\gamma _I}{Y_t} + {\delta _I}{R_{t - 4}} + {u_{It}}{\kern 1pt} \\ {R_t} = {\alpha _R} + {\beta _R}{Y_t} + {\gamma _R}\left( {{Y_t} - {Y_{t - 1}}} \right) + {\delta _R}\left( {{M_t} - {M_{t - 1}}} \right) + {\varepsilon _R}\left( {{R_{t - 1}} + {R_{t - 2}}} \right) + {u_{Rt}} \\ {Y_t} \equiv {C_t} + {I_t} + {G_t} \\ \end{array}\)
The data set consists of the following variables, quarterly from 1947:1 to 1988:1. However, the estimates are done using a common estimation range of 1950:1 through 1985:4. If RATS were left to determine the range, estimation would start in 1948:1 as the start of the range is determined by lag 4 on RATE in the instrument set.
CONS (C) |
= real personal consumption |
INVEST (I) |
= real gross domestic investment |
GNP (Y) |
= real GNP net of exports and imports |
GOVT (G) |
= real government purchases of goods and services |
MONEY (M) |
= M1 |
RATE (R) |
= 90 day Treasury bill rate |
The variables \(Y_t-Y_{t-1}\) (YDIFF), \(R_t+R_{t-1}\) (RSUM) and \(M_t-M_{t-1}\) (MDIFF) and are created from these:
set ydiff = gnp-gnp{1}
set rsum = rate+rate{1}
set mdiff = m-m{1}
Though we will start with the original set of equations, we will end up using a slightly different form for the investment equation, adding an \(I_{t-1}\) term to the second equation above. This is done because an estimate of the autocorrelation coefficient on the residuals in the original equation comes in very close to one.
The instrument set for all equations will be the full list of exogenous (GOVT and MDIFF) and pre-determined variables (lags and functions of lags of the four endogenous variables) that appear in the model. Note that you need to include the CONSTANT.
instruments constant cons{1} ydiff{1} gnp{1} govt $
mdiff rsum{1} rate{4}
Two-Stage Least Squares
You do two-stage least squares by setting the instrument set (already done) and using LINREG with the INST option.
linreg(inst) cons 1950:1 1985:4
# constant gnp cons{1}
linreg(inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
linreg(inst) rate 1950:1 1985:4
# constant gnp ydiff mdiff rsum{1}
Autocorrelated Errors
To correct for first-order autocorrelated errors, use AR1 with the INST option. If you choose METHOD=CORC, RATS uses Fair’s (1970) procedure. This requires, for consistency, that you include as instruments the lags of the variables involved in the regression. The alternative is METHOD=HILU, which does not have this requirement.
With the speed of current computers, there is no practical advantage to using the “Cochrane–Orcutt” style iterative procedures. Particularly in simultaneous equations, it is quite possible to have the function being optimized show multiple peaks when graphed against the autoregressive parameter. The search method of HILU will make it much more likely that you will find the best estimates. In fact, in the example model, we found a difference between the two techniques, and altered the model as a result.
A common criticism of simultaneous equations models where many of the equations have to be estimated with autocorrelation corrections is that much of the explanatory power of the “model” actually comes not from the structural relationship, but from the autoregressive errors. If your original equations are showing very low Durbin-Watsons, it would probably be a good idea to rethink them as dynamic equations.
The following expands the instrument set as required by Fair’s procedure and re-estimates the investment equation, using both HILU and CORC.
instruments constant cons{1 2} ydiff{1 2} gnp{1} govt{0 1} $
mdiff{0 1} rate{1 to 5}
ar1(method=hilu,inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
ar1(method=corc,inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
The two AR1 instructions produce dramatically different results even though they are (theoretically) minimizing the same function. Because of this, all further estimates use an investment equation which includes lagged investment as an explanatory variable. This incorporates the dynamics into the equation rather than tacking it on to the error term. The change in the model requires a change in the instrument set, since INVEST{1} is now in the model:
instruments constant cons{1} ydiff{1} gnp{1} invest{1} $
govt mdiff rsum{1} rate{4}
Three Stage Least Squares
You can estimate the system by three stage least squares (3SLS) using the INST option with either SUR or NLSYSTEM.
To use SUR, you must do the following:
1.Define the equations in the system using a set of EQUATION instructions.
2.Set up the instruments list using INSTRUMENTS.
3.Estimate the model using SUR(INST).
To use NLSYSTEM, you need to
1.Set the list of parameters to be estimated using the instruction NONLIN. If you might be doing a good deal of experimenting with your equations, it would be a good idea to set up a separate PARMSET for each equation, and then combine them when you estimate.
2.Create formulas for the equations with FRML instructions.
3.Set up the instruments list using INSTRUMENTS.
4.Estimate the model with NLSYSTEM(INST).
NLSYSTEM and SUR should produce almost identical results for any linear model which has no restrictions on the parameters. This uses SUR:
equation consleq cons
# constant gnp cons{1}
equation investleq invest
# constant invest{1} ydiff{1} gnp rate{4}
equation rateleq rate
# constant gnp ydiff mdiff rsum{1}
*
group prmodel consleq investleq rateleq
sur(inst,model=prmodel,iterations=10) * 1950:1 1985:4
and this uses NLSYSTEM:
nonlin(parmset=structural) c0 c1 c2 i0 i1 i2 i3 i4 r0 r1 r2 r3 r4
frml consnl cons = c0+c1*gnp+c2*cons{1}
frml investnl invest = i0+i1*invest{1}+i2*ydiff{1}+$
i3*gnp+i4*rate{4}
frml ratenl rate = r0+r1*gnp+r2*ydiff+r3*mdiff+r4*rsum{1}
nlsystem(inst,parmset=structural,cvout=v) 1950:1 1985:4 $
consnl investnl ratenl
Limited Information Maximum Likelihood (LIML)
LIML actually was used before the now much more popular 2SLS as a single equation (limited information) estimator for simultaneous equation models. For a description of it, see, for instance, Greene (2012). While it has some theoretical advantages over 2SLS, it doesn’t appear to provide superior estimates. It can be done with RATS using the procedure @LIML. Just as with LINREG(INST) for 2SLS, set the instrument list in advance using INSTRUMENTS. The syntax is then familiar:
@liml depvar start end
# list of explanatory variables
@liml cons 1950:1 1985:4
# constant gnp cons{1}
@liml invest 1950:1 1985:4
# constant invest{1} ydiff{1} gnp rate{4}
@liml rate 1950:1 1985:4
# constant gnp ydiff mdiff rsum{1}
Full Information Maximum Likelihood (FIML)
RATS has no specific instruction to do FIML for simultaneous equations. However, for small systems, you can implement FIML using the instruction NLSYSTEM. This assumes that you have Normal residuals with an unrestricted covariance matrix. You would set everything up as you would for 3SLS, except that, instead of using the INSTRUMENTS option, you include the option JACOBIAN=FRML for the Jacobian. For the linear model \(\bf{Y}_t \Gamma = {\bf{X}}_t {\rm B} + {\bf{u}}_t \), this will provide a formula which computes \(|G|\). For the example model, the Jacobian reduces to 1–C1–I3, but we write out the full expression.
frml jacobian = %det(||1.0 ,0.0 ,0.0 ,-c1|$
0.0 ,1.0 ,0.0 ,-i3|$
0.0 ,0.0 ,1.0 ,0.0|$
-1.0,-1.0 ,0.0 ,1.0||)
nlsystem(parmset=structural,cvout=v,jacobian=jacobian,iters=200,$
title="FIML Estimates") 1950:1 1985:4 consnl investnl ratenl
Full Program
open data prsmall.xls
cal(q) 1947
data(format=xls,org=obs) 1947:1 1988:1
*
set ydiff = gnp-gnp{1}
set rsum = rate+rate{1}
set mdiff = m-m{1}
*
instruments constant cons{1} ydiff{1} gnp{1} govt $
mdiff rsum{1} rate{4}
*
* First, we estimate the equations by 2SLS.
*
linreg(inst) cons 1950:1 1985:4
# constant gnp cons{1}
linreg(inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
linreg(inst) rate 1950:1 1985:4
# constant gnp ydiff mdiff rsum{1}
*
* Pindyck and Rubinfeld note the low Durbin-Watson on the investment
* equation. This is re-estimated using AR1. The Hildreth-Lu procedure
* gives a very different result from Cochrane-Orcutt (actually Fair's
* procedure), with a rho effectively of 1.0. We therefore replace P&R's
* investment equation with one redone to provide better dynamic behavior.
*
instruments constant cons{1 2} ydiff{1 2} gnp{1} govt{0 1} $
mdiff{0 1} rate{1 to 5}
ar1(method=hilu,inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
ar1(method=corc,inst) invest 1950:1 1985:4
# constant ydiff{1} gnp rate{4}
*
* The investment equation is altered by adding lagged investment to the
* explanatory variables. The complete model is then re-estimated (using
* 2SLS again) with an updated set of instruments
*
instruments constant cons{1} ydiff{1} gnp{1} invest{1} $
govt mdiff rsum{1} rate{4}
linreg(inst,frml=conseq) cons 1950:1 1985:4
# constant gnp cons{1}
linreg(inst,frml=investeq) invest 1950:1 1985:4
# constant invest{1} ydiff{1} gnp rate{4}
linreg(inst,frml=rateeq) rate 1950:1 1985:4
# constant gnp ydiff mdiff rsum{1}
*
* We now estimate the model using 3SLS with the instruction SUR.
*
equation consleq cons
# constant gnp cons{1}
equation investleq invest
# constant invest{1} ydiff{1} gnp rate{4}
equation rateleq rate
# constant gnp ydiff mdiff rsum{1}
*
group prmodel consleq investleq rateleq
sur(inst,model=prmodel,iterations=100) * 1950:1 1985:4
*
* We next estimate the model using 3SLS with the instruction NLSYSTEM.
* (Not necessary here but would be if there were some non-linearities).
*
nonlin(parmset=structural,zeros) c0 c1 c2 i0 i1 i2 i3 i4 r0 r1 r2 r3 r4
frml consnl cons = c0+c1*gnp+c2*cons{1}
frml investnl invest = i0+i1*invest{1}+i2*ydiff{1}+$
i3*gnp+i4*rate{4}
frml ratenl rate = r0+r1*gnp+r2*ydiff+r3*mdiff+r4*rsum{1}
nlsystem(inst,parmset=structural,cvout=v) 1950:1 1985:4 $
consnl investnl ratenl
*
* LIML estimation uses the LIML procedure
*
@liml cons 1950:1 1985:4
# constant gnp cons{1}
@liml invest 1950:1 1985:4
# constant invest{1} ydiff{1} gnp rate{4}
@liml rate 1950:1 1985:4
# constant gnp ydiff mdiff rsum{1}
*
* Finally, we estimate the model by FIML. This adds to the standard
* likelihood for a multivariate Normal model, the log det of the
* Jacobian of the transformation from residuals to endogenous variables.
* This is done using the Jacobian option, which gives the determinant.
* In this case, this actually would reduce to 1-c1-i3, but we write out
* the full expression.
*
frml jacobian = %det(||1.0 ,0.0 ,0.0 ,-c1|$
0.0 ,1.0 ,0.0 ,-i3|$
0.0 ,0.0 ,1.0 ,0.0|$
-1.0,-1.0 ,0.0 ,1.0||)
nlsystem(parmset=structural,cvout=v,jacobian=jacobian,iters=200,$
title="FIML Estimates") 1950:1 1985:4 consnl investnl ratenl
Output
Linear Regression - Estimation by Instrumental Variables
Dependent Variable CONS
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 141
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.3243791
Sum of Squared Residuals 18082.060169
J-Specification(5) 61.0820
Significance Level of J 0.0000000
Durbin-Watson Statistic 1.6280
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -3.743302427 4.966793544 -0.75367 0.45230661
2. GNP 0.028215936 0.018274085 1.54404 0.12481985
3. CONS{1} 0.964528206 0.027301301 35.32902 0.00000000
Linear Regression - Estimation by Instrumental Variables
Dependent Variable INVEST
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 140
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 23.87349707
Sum of Squared Residuals 79792.140737
J-Specification(4) 92.9231
Significance Level of J 0.0000000
Durbin-Watson Statistic 0.5451
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -63.82538832 8.16893092 -7.81319 0.00000000
2. YDIFF{1} 0.17929434 0.07713636 2.32438 0.02154365
3. GNP 0.21621773 0.00567178 38.12167 0.00000000
4. RATE{4} -10.90217143 1.22579661 -8.89395 0.00000000
Linear Regression - Estimation by Instrumental Variables
Dependent Variable RATE
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 139
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 0.9010717880
Sum of Squared Residuals 112.85832103
J-Specification(3) 9.9890
Significance Level of J 0.0186601
Durbin-Watson Statistic 1.2413
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -0.769457067 0.334490446 -2.30039 0.02291495
2. GNP 0.000874065 0.000291413 2.99940 0.00320641
3. YDIFF 0.001085252 0.006484148 0.16737 0.86732217
4. MDIFF -0.066131484 0.017867890 -3.70114 0.00030848
5. RSUM{1} 0.386253361 0.032303605 11.95697 0.00000000
Regression with AR1 - Estimation by Instrumental Variables
Dependent Variable INVEST
Quarterly Data From 1950:02 To 1985:04
Usable Observations 143
Degrees of Freedom 138
Mean of Dependent Variable 385.10769231
Std Error of Dependent Variable 130.65960726
Standard Error of Estimate 11.49120841
Sum of Squared Residuals 18222.606170
Durbin-Watson Statistic 1.9859
Q(35-1) 25.7318
Significance Level of Q 0.8449820
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -79194.55526 13284.47342 -5.96144 0.00000002
2. YDIFF{1} 0.02770 0.03215 0.86177 0.39031026
3. GNP 0.58813 0.04778 12.30957 0.00000000
4. RATE{4} -0.49612 1.24855 -0.39736 0.69171816
5. RHO 0.99990 0.00337 296.28215 0.00000000
Regression with AR1 - Estimation by Instrumental Variables
Dependent Variable INVEST
Quarterly Data From 1950:02 To 1985:04
Usable Observations 143
Degrees of Freedom 138
Mean of Dependent Variable 385.10769231
Std Error of Dependent Variable 130.65960726
Standard Error of Estimate 15.97848755
Sum of Squared Residuals 35233.064905
Durbin-Watson Statistic 1.8752
Q(35-1) 42.0270
Significance Level of Q 0.1622199
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -61.40753139 22.24527145 -2.76048 0.00655668
2. YDIFF{1} 0.10246895 0.04770245 2.14809 0.03345317
3. GNP 0.20480112 0.01027980 19.92267 0.00000000
4. RATE{4} -6.26124578 1.56015119 -4.01323 0.00009779
5. RHO 0.78905420 0.05297324 14.89534 0.00000000
Linear Regression - Estimation by Instrumental Variables
Dependent Variable CONS
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 141
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.3267610
Sum of Squared Residuals 18089.667678
J-Specification(6) 61.1065
Significance Level of J 0.0000000
Durbin-Watson Statistic 1.6284
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -3.670622295 4.957241122 -0.74046 0.46025417
2. GNP 0.027886587 0.018218752 1.53065 0.12809568
3. CONS{1} 0.965018982 0.027219090 35.45376 0.00000000
Linear Regression - Estimation by Instrumental Variables
Dependent Variable INVEST
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 139
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 16.78975787
Sum of Squared Residuals 39183.539726
J-Specification(4) 15.3558
Significance Level of J 0.0040175
Durbin-Watson Statistic 2.0147
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -25.01460746 6.44309646 -3.88239 0.00015926
2. INVEST{1} 0.64206142 0.04808629 13.35228 0.00000000
3. YDIFF{1} 0.21567242 0.05431865 3.97050 0.00011457
4. GNP 0.07953995 0.01099385 7.23495 0.00000000
5. RATE{4} -4.59031825 0.98390949 -4.66539 0.00000716
Linear Regression - Estimation by Instrumental Variables
Dependent Variable RATE
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 139
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 0.9355393107
Sum of Squared Residuals 121.65749845
J-Specification(4) 12.6151
Significance Level of J 0.0133178
Durbin-Watson Statistic 1.2208
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -0.839398549 0.345175636 -2.43180 0.01629650
2. GNP 0.000992823 0.000295518 3.35960 0.00100771
3. YDIFF -0.002971527 0.006356691 -0.46746 0.64089971
4. MDIFF -0.059860827 0.018232136 -3.28326 0.00129814
5. RSUM{1} 0.373238376 0.032776485 11.38738 0.00000000
Linear Systems - Estimation by GMM-Factored Weight Matrix (3SLS)
Iterations Taken 22
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
J-Specification(14) 93.9316
Significance Level of J 0.0000000
Dependent Variable CONS
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.3061877
Sum of Squared Residuals 18407.502834
Durbin-Watson Statistic 1.6369
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -1.310489539 4.844085691 -0.27053 0.78674952
2. GNP 0.016637966 0.017537130 0.94873 0.34275898
3. CONS{1} 0.981868303 0.026195595 37.48219 0.00000000
Dependent Variable INVEST
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 16.69511093
Sum of Squared Residuals 40136.648959
Durbin-Watson Statistic 1.7262
Variable Coeff Std Error T-Stat Signif
************************************************************************************
4. Constant -26.77413334 6.03182829 -4.43881 0.00000905
5. INVEST{1} 0.62900972 0.04069816 15.45548 0.00000000
6. YDIFF{1} 0.10089273 0.04471907 2.25615 0.02406151
7. GNP 0.08441125 0.00937220 9.00655 0.00000000
8. RATE{4} -5.07290797 0.84845596 -5.97899 0.00000000
Dependent Variable RATE
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 1.0702067790
Sum of Squared Residuals 164.92932716
Durbin-Watson Statistic 1.2639
Variable Coeff Std Error T-Stat Signif
************************************************************************************
9. Constant -0.713970944 0.369638934 -1.93154 0.05341679
10. GNP 0.000999767 0.000289942 3.44817 0.00056440
11. YDIFF -0.013923726 0.005972398 -2.33135 0.01973513
12. MDIFF -0.061750288 0.015646163 -3.94667 0.00007924
13. RSUM{1} 0.379550597 0.031360902 12.10267 0.00000000
Covariance\Correlation Matrix of Residuals
CONS INVEST RATE
CONS 127.82988079 0.05492486 0.30609482
INVEST 10.36751028 278.72672888 0.62238984
RATE 3.70373475 11.12037683 1.14534255
GMM-Factored Weight Matrix
Convergence in 22 Iterations. Final criterion was 0.0000039 <= 0.0000100
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Function Value 93.93159806
J-Specification(14) 93.9316
Significance Level of J 0.0000000
Dependent Variable CONS
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.3061875
Sum of Squared Residuals 18407.502180
Durbin-Watson Statistic 1.6369
Dependent Variable INVEST
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 16.69511096
Sum of Squared Residuals 40136.649092
Durbin-Watson Statistic 1.7262
Dependent Variable RATE
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 1.0702067986
Sum of Squared Residuals 164.92933322
Durbin-Watson Statistic 1.2639
Variable Coeff Std Error T-Stat Signif
***************************************************************************************
1. C0 -1.31049410 4.84408536 -0.27053 0.78674878
2. C1 0.01663799 0.01753713 0.94873 0.34275838
3. C2 0.98186827 0.02619559 37.48219 0.00000000
4. I0 -26.77413281 6.03182846 -4.43881 0.00000905
5. I1 0.62900972 0.04069816 15.45548 0.00000000
6. I2 0.10089273 0.04471907 2.25615 0.02406151
7. I3 0.08441125 0.00937220 9.00655 0.00000000
8. I4 -5.07290792 0.84845595 -5.97899 0.00000000
9. R0 -0.71397099 0.36963894 -1.93154 0.05341678
10. R1 0.00099977 0.00028994 3.44817 0.00056440
11. R2 -0.01392373 0.00597240 -2.33135 0.01973512
12. R3 -0.06175029 0.01564616 -3.94667 0.00007924
13. R4 0.37955059 0.03136090 12.10267 0.00000000
Linear Regression - Estimation by LIML
Dependent Variable CONS
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 141
Centered R^2 0.9994405
R-Bar^2 0.9994326
Uncentered R^2 0.9999409
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.5939059
Sum of Squared Residuals 18953.030316
Regression F(2,141) 125945.7304
Significance Level of F 0.0000000
Log Likelihood -555.6804
Durbin-Watson Statistic 1.6350
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 1.8710360083 5.2754295101 0.35467 0.72336682
2. GNP 0.0027746082 0.0197620627 0.14040 0.88854374
3. CONS{1} 1.0024393238 0.0295164389 33.96207 0.00000000
LIML Specification Test
Chi-Squared(6)= 107.089139 with Significance Level 0.00000000
Linear Regression - Estimation by LIML
Dependent Variable INVEST
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 139
Centered R^2 0.9839850
R-Bar^2 0.9835241
Uncentered R^2 0.9983374
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 16.82701273
Sum of Squared Residuals 39357.621703
Regression F(4,139) 2135.0899
Significance Level of F 0.0000000
Log Likelihood -608.2926
Durbin-Watson Statistic 2.0314
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -24.15069393 6.46227176 -3.73718 0.00027096
2. INVEST{1} 0.65057260 0.04825642 13.48158 0.00000000
3. YDIFF{1} 0.21775768 0.05444255 3.99977 0.00010258
4. GNP 0.07745179 0.01103494 7.01877 0.00000000
5. RATE{4} -4.45470801 0.98687987 -4.51393 0.00001345
LIML Specification Test
Chi-Squared(4)= 17.841923 with Significance Level 0.00132504
Linear Regression - Estimation by LIML
Dependent Variable RATE
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Degrees of Freedom 139
Centered R^2 0.9069518
R-Bar^2 0.9042741
Uncentered R^2 0.9734352
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 1.0113888399
Sum of Squared Residuals 142.18412657
Regression F(4,139) 338.7123
Significance Level of F 0.0000000
Log Likelihood -203.4134
Durbin-Watson Statistic 1.2077
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant -0.957697916 0.378707653 -2.52886 0.01256033
2. GNP 0.001193690 0.000337771 3.53402 0.00055621
3. YDIFF -0.009833182 0.007826592 -1.25638 0.21108524
4. MDIFF -0.049254607 0.020543092 -2.39762 0.01783026
5. RSUM{1} 0.351224765 0.037416125 9.38699 0.00000000
LIML Specification Test
Chi-Squared(4)= 13.348844 with Significance Level 0.00969128
FIML Estimates
Convergence in 73 Iterations. Final criterion was 0.0000077 <= 0.0000100
Quarterly Data From 1950:01 To 1985:04
Usable Observations 144
Log Likelihood -1335.2871
Dependent Variable CONS
Mean of Dependent Variable 1411.1625000
Std Error of Dependent Variable 486.7321052
Standard Error of Estimate 11.5817648
Sum of Squared Residuals 19315.767782
Durbin-Watson Statistic 1.6291
Dependent Variable INVEST
Mean of Dependent Variable 383.83541667
Std Error of Dependent Variable 131.09401018
Standard Error of Estimate 16.67944487
Sum of Squared Residuals 40061.358872
Durbin-Watson Statistic 1.7629
Dependent Variable RATE
Mean of Dependent Variable 5.1534027778
Std Error of Dependent Variable 3.2689143326
Standard Error of Estimate 1.0253194085
Sum of Squared Residuals 151.38430408
Durbin-Watson Statistic 1.2672
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. C0 3.42547966 4.75020661 0.72112 0.47083431
2. C1 -0.00465438 0.01672408 -0.27830 0.78077911
3. C2 1.01357026 0.02498662 40.56452 0.00000000
4. I0 -25.79744169 6.05768407 -4.25863 0.00002057
5. I1 0.63679041 0.04089645 15.57080 0.00000000
6. I2 0.11251043 0.04395753 2.55953 0.01048150
7. I3 0.08225606 0.00947648 8.68002 0.00000000
8. I4 -4.90819918 0.86118764 -5.69934 0.00000001
9. R0 -0.63893440 0.34540833 -1.84979 0.06434319
10. R1 0.00089217 0.00023999 3.71759 0.00020113
11. R2 -0.01053334 0.00295132 -3.56902 0.00035832
12. R3 -0.06561464 0.01389994 -4.72050 0.00000235
13. R4 0.39059767 0.02597049 15.04006 0.00000000
Copyright © 2025 Thomas A. Doan