|
Statistics and Algorithms / Probability Distributions / Student-t (multivariate) |
|
Parameters |
Mean (\(\mu \)), covariance matrix of the underlying multivariate Normal (\(\Sigma \)) or of the distribution itself (\(\mathbf{S}\)), Degrees of freedom (\(\nu \)) |
|
Kernel |
\(\left( 1+\left( x-\mu \right) ^{\prime }\Sigma ^{-1}\left(x-\mu\right) /\nu \right) ^{-\left( \nu +n\right) /2}\) or \(\left( 1+\left( x-\mu \right) ^{\prime }\mathbf{S}^{-1}\left( x-\mu \right)/\left( \nu -2\right) \right) ^{-\left( \nu +n\right) /2}\) |
|
Support |
\(\mathbb{R}^{n}\) |
|
Mean |
\(\mu \) |
|
Covariance Matrix |
\(\Sigma \dfrac{\nu }{\left( \nu -2\right) }\) or \(\mathbf{S}\) |
|
Main Uses |
Prior, exact and approximate posteriors for sets of parameters with unlimited ranges. |
|
Density Function |
%LOGTDENSITY(s,u,nu) is the log density based upon the \(\mathbf{S}\) parameterization. Use %LOGTDENSITY(s,x-mu,nu) to compute \(\log f\left( x|\mu ,\mathbf{S},\nu \right) \)
%LOGTDENSITYSTD(sigma,u,nu) is the log density based upon the \(\mathbf{\Sigma}\) parameterization. Use %LOGTDENSITYSTD(sigma,u,nu) to compute \(\log f\left( x|\mu ,\Sigma ,\nu \right) \).
The same functions work for both univariate and multivariate distributions. |
|
Random Draws |
%RANT(nu) or %RANMVT(fsigma,nu)
%RANT(nu) draws one or more (depending upon the target) standard t's with independent numerators and a common denominator. %RANMVT(fsigma,nu) draws a multivariate t with fsigma as a "square root" of the \(\Sigma\) matrix. You would typically compute fsigma as %DECOMP(sigma). The function is parameterized this way in case you need to do many draws with a single sigma, as you can do the decomposition in advance.
To draw a multivariate t with covariance matrix S and nu degrees of freedom, use %RANMVT(%DECOMP(s*((nu-2.)/nu))). |
Copyright © 2026 Thomas A. Doan