HEGY Procedure |
@HEGY computes the Hylleberg, et. al. (1990) seasonal unit root tests for quarterly time series with extensions by Ghysels, et. al. (1994) to include additional tests.
@HEGY( options ) series start end
Parameters
|
series |
series to analyze |
|
start end |
range of series to use. By default, the defined range of series. |
Options
DET=NONE/CONSTANT/SD/TREND/STREND/[ALL]
Select the deterministic component. NONE sets the deterministic component to zero; CONSTANT includes intercept only; SD includes constant and 3 seasonal dummies, TREND includes constant and linear trend, STREND includes constant, trend and seasonal dummies, ALL (the default) reports all.
LAGS=lag length [4]
Controls default lag length. Can be overridden for particular deterministic models using the other "lags" options listed below.
NLAGS=Number of lags when DET=NONE [LAGS]
ILAGS=Number of lags when DET=CONSTANT [LAGS]
SLAGS=Number of lags when DET=SD [LAGS]
TLAGS=Number of lags when DET=TREND [LAGS]
STLAGS=Number of lags when DET=STREND [LAGS]
Note that for these 5 options, the default setting is controlled by the LAGS option described above (its default value is 4).
TITLE="title of report" ["HEGY Seasonal Unit Root Test, Series xxx"]
Description
The procedure runs the regression:
\(\begin{array}{l}
{y_{4,t}} = {\rm{det}}\,{\rm{terms + }}{\pi _1}{y_{1,t - 1}} + {\pi _2}{y_{2,t - 1}} + {\pi _3}{y_{3,t - 2}} + {\pi _4}{y_{3,t - 1}} + {\rm{lags}}\,{\rm{of }}{y_{4,t}} \\
{y_{1,t}} = {y_t} + {y_{t - 1}} + {y_{t - 2}} + {y_{t - 3}} \\
{y_{2,t}} = - {y_t} + {y_{t - 1}} - {y_{t - 2}} + {y_{t - 3}} \\
{y_{3,t}} = - {y_t} + {(y_{t - 2}} \\
{y_{4,t}} = {y_t} - {y_{\scriptstyle t - 4 \hfill \atop
\scriptstyle \hfill}} \\
\end{array}\)
The tests reported are t-statistics on \(\pi_1\), \(\pi_2 \), \(\pi_3\), and \(\pi_4\) and an F-statistic on \(\pi_3=\pi_4=0\). These all have non-standard distributions and critical values for these in the original HEGY paper. Also reported are the extensions of HEGY method in the Ghysels paper. These
are denoted F234 for \(\pi_2=\pi_3=\pi_4=0\) and F1234 for \(\pi_1=\pi_2=\pi_3=\pi_4=0\).
It also reports a Lagrange Multiplier test for autocorrelation in the error term of order 1-4 (thus a test for whether there is residual autocorrelation) and (if appropriate) the significance of the last lag on the seasonal differences (thus a test for whether you might have included too many lags).
Example
This does the HEGY regression directly by generating the required series and running a LINREG and doing the tests, and also by simply using the @HEGY procedure. The direct regression does just the full set of deterministics (constant, trend, seasonals), while the procedure generates a full table of tests for deterministic components (the default is DET=ALL).
*
* Enders, Applied Econometric Time Series, 4th edition
* Example from Chapter 4, pages 226-227
* HEGY test
*
open data quarterly.xls
calendar(q) 1960:1
data(format=xls,org=columns) 1960:01 2012:04 m1nsa m2nsa
*
set trend = t
*
set y = log(m1nsa)
set ysdiff = y-y{4}
set y1t = y+y{1}+y{2}+y{3}
set y2t = -y+y{1}-y{2}+y{3}
set y3t = -y+y{2}
seasonal seasons
*
* Pick the lag length on the seasonal differences by general-to-specific
* with maximum lags of 12 and a significance level of .05.
*
stwise(method=gtos,force=9,slstay=.05) ysdiff
# constant trend y1t{1} y2t{1} y3t{1 2} seasons{0 to -2} ysdiff{1 to 12}
*
* Rerun with the chosen number of lags. (The estimates will be slightly
* different because the previous regression uses the range that allows
* for 12 lags). Note that the coefficients on the deterministic
* variables depend upon the precise way in which the seasonal dummies
* are generated; that will not, however, have any effect on the other
* coefficients.
*
linreg ysdiff
# constant trend y1t{1} y2t{1} y3t{1 2} seasons{0 to -2} ysdiff{1 to 8}
compute forunit=%tstats(3)
compute forsemiannual=%tstats(4)
exclude(noprint)
# y3t{1 2}
compute forseasonal=%cdstat
*
disp "HEGY Test Statistics"
disp "Non-Seasonal Unit Root" @30 ###.### forunit
disp "Semi-Annual Unit Root" @30 ###.### forsemiannual
disp "Annual Unit Root" @30 ###.### forseasonal
*
* The @HEGY procedure will do the test. Each line in the output has a
* different set of deterministic variables. The one which matches the
* result above is the last line (Intercept, Seasonal Dummies and Trend).
*
@hegy(lags=8) y
Output
The procedure output is at the end, where the final row is the one that matches the other calculations. The first block of output is from an STWISE instruction which does a general-to-specific pruning of the lags on the seasonally differenced data.
Stepping Out with P= 0.549613 Variable YSDIFF{12}
Stepping Out with P= 0.923267 Variable YSDIFF{11}
Stepping Out with P= 0.179607 Variable YSDIFF{10}
Stepping Out with P= 0.305906 Variable YSDIFF{9}
Stepwise Regression
Dependent Variable YSDIFF
Quarterly Data From 1964:01 To 2012:04
Usable Observations 196
Degrees of Freedom 179
Centered R^2 0.9400205
R-Bar^2 0.9346592
Uncentered R^2 0.9776523
Mean of Dependent Variable 0.0556573287
Std Error of Dependent Variable 0.0430003391
Standard Error of Estimate 0.0109916807
Sum of Squared Residuals 0.0216262511
Regression F(16,179) 175.3345
Significance Level of F 0.0000000
Log Likelihood 614.8603
Durbin-Watson Statistic 1.9650
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 0.055858495 0.030207594 1.84915 0.06608469
2. TREND 0.000189377 0.000087165 2.17263 0.03112235
3. Y1T{1} -0.003414505 0.001571643 -2.17257 0.03112716
4. Y2T{1} -0.689355735 0.162357564 -4.24591 0.00003492
5. Y3T{1} -0.292252504 0.099972313 -2.92333 0.00391041
6. Y3T{2} -0.227173162 0.099665212 -2.27936 0.02382578
7. SEASONS{-2} 0.019740651 0.005393804 3.65988 0.00033187
8. SEASONS{-1} 0.005885074 0.003114509 1.88957 0.06043244
9. SEASONS 0.024879203 0.005226092 4.76058 0.00000397
10. YSDIFF{1} 0.504376052 0.177609610 2.83980 0.00503684
11. YSDIFF{2} 0.046309609 0.181853148 0.25465 0.79928277
12. YSDIFF{3} -0.439920339 0.178977475 -2.45796 0.01492463
13. YSDIFF{4} 0.033559513 0.153320818 0.21888 0.82698958
14. YSDIFF{5} 0.324517792 0.137319448 2.36323 0.01918896
15. YSDIFF{6} 0.068490152 0.140526326 0.48738 0.62658324
16. YSDIFF{7} -0.424236529 0.135829357 -3.12331 0.00208618
17. YSDIFF{8} 0.235110963 0.076568307 3.07060 0.00246936
Linear Regression - Estimation by Least Squares
Dependent Variable YSDIFF
Quarterly Data From 1963:01 To 2012:04
Usable Observations 200
Degrees of Freedom 183
Centered R^2 0.9397546
R-Bar^2 0.9344872
Uncentered R^2 0.9774654
Mean of Dependent Variable 0.0551413477
Std Error of Dependent Variable 0.0427324225
Standard Error of Estimate 0.0109375632
Sum of Squared Residuals 0.0218923428
Regression F(16,183) 178.4109
Significance Level of F 0.0000000
Log Likelihood 628.2059
Durbin-Watson Statistic 1.9759
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 0.056232110 0.030054862 1.87098 0.06294382
2. TREND 0.000187656 0.000086565 2.16781 0.03146474
3. Y1T{1} -0.003395525 0.001563390 -2.17190 0.03114969
4. Y2T{1} -0.668391667 0.160387335 -4.16736 0.00004747
5. Y3T{1} -0.280015237 0.097245586 -2.87946 0.00445856
6. Y3T{2} -0.216868536 0.097029507 -2.23508 0.02662157
7. SEASONS{-2} 0.018748674 0.005310243 3.53066 0.00052446
8. SEASONS{-1} 0.005628604 0.003080844 1.82697 0.06933364
9. SEASONS 0.023943359 0.005143959 4.65466 0.00000621
10. YSDIFF{1} 0.535704154 0.175387949 3.05440 0.00259186
11. YSDIFF{2} 0.030286711 0.180000098 0.16826 0.86656502
12. YSDIFF{3} -0.419033142 0.175888503 -2.38238 0.01822614
13. YSDIFF{4} 0.004912332 0.150857076 0.03256 0.97405871
14. YSDIFF{5} 0.345588010 0.135864030 2.54363 0.01179775
15. YSDIFF{6} 0.048956539 0.138698617 0.35297 0.72451669
16. YSDIFF{7} -0.399560684 0.133286787 -2.99775 0.00309773
17. YSDIFF{8} 0.221207191 0.075200442 2.94157 0.00368775
HEGY Test Statistics
Non-Seasonal Unit Root -2.172
Semi-Annual Unit Root -4.167
Annual Unit Root 6.812
HEGY Seasonal Unit Root Test, Series Y
Sample from 1960:01 to 2012:04
Observations 212
PI1 PI2 PI3 PI4 F34 F234 F1234 Lags AR(1-4) Signif Last Lag t Signif
None 2.542 -1.589 -1.867 -2.101 4.001 3.575 4.516 8 2.051 0.089 2.031 0.043625
I Only -0.139 -1.579 -1.855 -2.070 3.911 3.501 2.638 8 2.091 0.084 1.985 0.048597
I,SD -0.194 -4.134 -2.146 -2.909 6.693 11.199 8.412 8 1.170 0.326 2.650 0.008759
I,Tr -2.095 -1.597 -1.919 -2.058 4.009 3.588 3.784 8 1.760 0.139 2.269 0.024428
I,SD,Tr -2.172 -4.167 -2.235 -2.879 6.812 11.393 9.752 8 0.804 0.524 2.942 0.003688
Copyright © 2025 Thomas A. Doan