Examples / CHANKAROLYI.RPF |
CHANKAROLYI.RPF demonstrates GMM on a system of non-linear equations. It is based upon the model for interest rates from Chan, Karolyi, Longstaff and Sanders(1992). The model generates a conditional mean and a conditional variance:
\begin{equation} r_{t + 1} - r_t = \alpha + \beta r_t + \varepsilon _{t + 1} \end{equation}
\begin{equation}
E_t \left[ {\varepsilon _{t + 1} } \right] = 0,E_t \left[ {\varepsilon _{t + 1}^2 } \right] = \sigma ^2 r_t^{2\gamma }
\end{equation}
Note how the VARIANCE formula uses the square of the EPS formula:
nonlin alpha beta gamma sigmasq
frml eps = y1{-1}-(1+beta)*y1-alpha
frml variance = eps(t)^2-sigmasq*y1^(2*gamma)
Different information sets (instruments) and different ways of computing the weight matrix will give different estimates. The example does four NLSYSTEMS, two of which show here are the just-identified and overidentified (2 conditions x 3 instruments vs 4 free parameters) estimated with the default NOZUDEP handling:
instruments constant y1
nlsystem(instruments) / eps variance
instruments constant y1{0 1}
nlsystem(instruments) / eps variance
Full Program
calendar(m) 1946:1
open data tbills.xls
data(format=xls,org=columns) 1946:01 2011:01 tb3ms
*
set y1 = tb3ms
nonlin alpha beta gamma sigmasq
frml eps = y1{-1}-(1+beta)*y1-alpha
frml variance = eps(t)^2-sigmasq*y1^(2*gamma)
*
* Guess values from a linear regression
*
linreg y1
# constant y1{1}
compute alpha=%beta(1),beta=%beta(2)-1
compute sigmasq=%sigmasq,gamma=0.0
*
* Just identified model
*
instruments constant y1
nlsystem(instruments) / eps variance
*
* Overidentified model
*
* With nozudep
*
instruments constant y1{0 1}
nlsystem(instruments) / eps variance
*
* Same thing, but correcting the covariance matrix and J-statistic
*
instruments constant y1{0 1}
nlsystem(instruments,robusterrors) / eps variance
*
* With ZUDEP
*
instruments constant y1{0 1}
nlsystem(instruments,zudep) / eps variance
Output
Linear Regression - Estimation by Least Squares
Dependent Variable Y1
Monthly Data From 1946:02 To 2011:01
Usable Observations 780
Degrees of Freedom 778
Centered R^2 0.9809291
R-Bar^2 0.9809046
Uncentered R^2 0.9940858
Mean of Dependent Variable 4.4570256410
Std Error of Dependent Variable 2.9901748609
Standard Error of Estimate 0.4132011179
Sum of Squared Residuals 132.83195749
Regression F(1,778) 40017.0673
Significance Level of F 0.0000000
Log Likelihood -416.3905
Durbin-Watson Statistic 1.3212
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Constant 0.0418011052 0.0265713863 1.57316 0.11608778
2. Y1{1} 0.9905557662 0.0049517225 200.04266 0.00000000
GMM-Factored Weight Matrix
Convergence in 17 Iterations. Final criterion was 0.0000000 <= 0.0000100
Monthly Data From 1946:01 To 2011:01
Usable Observations 780
Skipped/Missing (from 781) 1
Function Value 4.70586311e-15
Variable Coeff Std Error T-Stat Signif
***************************************************************************************
1. ALPHA 0.041801105 0.026537299 1.57518 0.11521418
2. BETA -0.009444234 0.004945370 -1.90971 0.05617027
3. GAMMA 1.595429690 0.378547682 4.21461 0.00002502
4. SIGMASQ 0.000477412 0.000879624 0.54275 0.58730500
GMM-Factored Weight Matrix
Convergence in 9 Iterations. Final criterion was 0.0000048 <= 0.0000100
Monthly Data From 1946:01 To 2011:01
Usable Observations 779
Skipped/Missing (from 781) 2
Function Value 96.31177513
J-Specification(2) 96.3118
Significance Level of J 0.0000000
Variable Coeff Std Error T-Stat Signif
***************************************************************************************
1. ALPHA 0.042300267 0.026607082 1.58981 0.11187711
2. BETA -0.010951691 0.004909161 -2.23087 0.02568986
3. GAMMA 1.358737262 0.275738621 4.92763 0.00000083
4. SIGMASQ 0.001482979 0.001946244 0.76197 0.44607807
GMM-Factored Weight Matrix
Convergence in 7 Iterations. Final criterion was 0.0000079 <= 0.0000100
With Heteroscedasticity/Misspecification Adjusted Standard Errors
Monthly Data From 1946:01 To 2011:01
Usable Observations 779
Skipped/Missing (from 781) 2
Function Value 96.31179931
J-Specification(2) 96.3118
Significance Level of J 0.0000000
Variable Coeff Std Error T-Stat Signif
***************************************************************************************
1. ALPHA 0.042300211 0.000031814 1329.62802 0.00000000
2. BETA -0.010951687 0.000007532 -1454.06978 0.00000000
3. GAMMA 1.358733495 0.001222156 1111.75164 0.00000000
4. SIGMASQ 0.001483006 0.000008438 175.74638 0.00000000
GMM-Continuously Updated Weight Matrix
Convergence in 7 Iterations. Final criterion was 0.0000048 <= 0.0000100
Monthly Data From 1946:01 To 2011:01
Usable Observations 779
Skipped/Missing (from 781) 2
Function Value 10.77230305
J-Specification(2) 10.7723
Significance Level of J 0.0045796
Variable Coeff Std Error T-Stat Signif
***************************************************************************************
1. ALPHA 0.059769659 0.030763748 1.94286 0.05203306
2. BETA -0.013557828 0.008823849 -1.53650 0.12441624
3. GAMMA 1.309121407 0.194980317 6.71412 0.00000000
4. SIGMASQ 0.001206328 0.000876889 1.37569 0.16891741
Copyright © 2025 Thomas A. Doan