RATS 11
RATS 11

Examples /

EXAMPLEFIVE.RPF

Home Page

← Previous Next →

EXAMPLEFIVE.RPF is an example for the Introduction. This works with cross section data, showing the use of the SMPL option to restrict subsamples based upon the value of a series, and use of SCATTER to generate an x-y graph.

Full Program

 

open data wages1.dat
data(format=prn,org=columns) 1 3294 exper male school wage
*
* Do basic statistics on the two subsamples. The first is where "male" is
* non-zero, the second where .not.male is non-zero, that is, where male
* itself is zero.
*
stats(smpl=male) wage
stats(smpl=.not.male) wage
*
* The regression on constant and the male dummy will give the same type
* of information in a form which will usually be easier to interpret. The
* coefficient on the intercept will be the same as the mean for the
* females, while the coefficient on the male dummy is the difference
* between the mean for males and the mean for females.
*
linreg wage
# constant male
*
* Adds school and exper to the regression and test the joint
* significance of the two additional variables.
*
linreg wage
# constant male school exper
*
* This is generated by the Regression Tests Wizard
*
test(zeros)
# 3 4
*
* The same test can also be done using EXCLUDE
*
exclude
# school exper
*
* Generate the fitted values from the original regression and do an
* Actual-Fitted graph.
*
linreg wage
# constant school
prj wagefit
*
scatter(style=symbols,overlay=lines,ovsame,$
  vlabel="Hourly Wages",hlabel="Years of School") 2
# school wage
# school wagefit

Output

 

Statistics on Series WAGE

Observations                  1725      Skipped/Missing                1569

Sample Mean               6.313021      Variance                  12.242031

Standard Error            3.498861      SE of Sample Mean          0.084243

t-Statistic (Mean=0)     74.938512      Signif Level (Mean=0)      0.000000

Skewness                  1.921402      Signif Level (Sk=0)        0.000000

Kurtosis (excess)         8.845542      Signif Level (Ku=0)        0.000000

Jarque-Bera            6685.148147      Signif Level (JB=0)        0.000000


 

Statistics on Series WAGE

Observations                  1569      Skipped/Missing                1725

Sample Mean               5.146924      Variance                   8.272740

Standard Error            2.876237      SE of Sample Mean          0.072613

t-Statistic (Mean=0)     70.881766      Signif Level (Mean=0)      0.000000

Skewness                  1.977027      Signif Level (Sk=0)        0.000000

Kurtosis (excess)        10.989324      Signif Level (Ku=0)        0.000000

Jarque-Bera            8917.135961      Signif Level (JB=0)        0.000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3292

Centered R^2                        0.0317459

R-Bar^2                             0.0314517

Uncentered R^2                      0.7639932

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.2173642756

Sum of Squared Residuals         34076.917047

Regression F(1,3292)                 107.9338

Significance Level of F             0.0000000

Log Likelihood                     -8522.2280

Durbin-Watson Statistic                1.8662

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     5.1469238679 0.0812248211     63.36639  0.00000000

2.  MALE                         1.1660972915 0.1122421588     10.38912  0.00000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3290

Centered R^2                        0.1325877

R-Bar^2                             0.1317968

Uncentered R^2                      0.7885729

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.0461431195

Sum of Squared Residuals         30527.870207

Regression F(3,3290)                 167.6302

Significance Level of F             0.0000000

Log Likelihood                     -8341.0906

Durbin-Watson Statistic                1.9051

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -3.380018181  0.464976503     -7.26922  0.00000000

2.  MALE                          1.344368629  0.107675888     12.48533  0.00000000

3.  SCHOOL                        0.638797702  0.032795844     19.47801  0.00000000

4.  EXPER                         0.124825450  0.023762761      5.25299  0.00000016


 

Null Hypothesis : The Following Coefficients Are Zero

SCHOOL

EXPER

F(2,3290)=    191.24105 with Significance Level 0.00000000


 

Null Hypothesis : The Following Coefficients Are Zero

SCHOOL

EXPER

F(2,3290)=    191.24105 with Significance Level 0.00000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3292

Centered R^2                        0.0798020

R-Bar^2                             0.0795225

Uncentered R^2                      0.7757067

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.1365065226

Sum of Squared Residuals         32385.620064

Regression F(1,3292)                 285.4910

Significance Level of F             0.0000000

Log Likelihood                     -8438.3863

Durbin-Watson Statistic                1.8265


    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -0.722506571  0.387391365     -1.86506  0.06226247

2.  SCHOOL                        0.557161695  0.032975021     16.89648  0.00000000

 

Graph

 

 


Copyright © 2025 Thomas A. Doan