Can you please provide the reference/paper for the models in GARCHUVMAX.RPF.
Further to viewtopic.php?f=11&t=3645, and based on GARCHUVMAX.RPF, I have attempted to generate forecasts: (i) fmu, (ii) sigma, (iii) VaR, (iv) ES; for APARCH (chosen because ZARCH can be done as APARCH with lambda pegged to 1.0). They look a little low to me, please can you check. Thanks.
Code: Select all
*
open data garch.asc
data(format=free,org=columns) 1 1867 bp cd dm jy sf
*
set dlogdm = 100.0*log(dm/dm{1})
*===============================
compute tstart = 1+1+1
compute tend = 1867
compute value = 100
*===============================
*
* Parameter sets
*
linreg dlogdm
# constant dlogdm{1}
frml(lastreg,vector=beta) meanf
nonlin(parmset=meanparms) beta
*
*===============================
*
* APARCH (asymmetric power GARCH)
*
set uu = %seesq
set h = %seesq
set u = 0.0
nonlin(parmset=garchparms) c a b
nonlin(parmset=powerparms) lambda
nonlin(parmset=asymmparms) d
compute a=0.0
compute b=0.0
compute c=%seesq
compute lambda=2.0
compute d=0.0
frml varf = uupower=uu{1}^(.5*lambda),$
(c+a*uupower+d*%if(u{1}<0,uupower,0.0)+b*h{1}^(.5*lambda))^(2.0/lambda)
frml logl = (h(t)=varf(t)),$
(u=dlogdm-meanf),$
(uu(t)=u^2),$
%logdensity(h,u)
maximize(parmset=meanparms+garchparms+asymmparms+powerparms,title="Asymmetric power GARCH",METHOD=BFGS) logl tstart tend
*
* 1-step ahead forecast
*
comp fmu = %beta(1)+(%beta(2)*dlogdm(tend))
disp 'fmu=' fmu
compute c=%beta(3),a=%beta(4),b=%beta(5),d=%beta(6),lambda=%beta(7)
comp hhat = uupower=uu(tend)^(.5*lambda),$
(c + a*uupower+d*%if(u(tend)<0,uupower,0.0) + b*h(tend)^(.5*lambda))^(2.0/lambda)
comp hat = (hhat)^(1.0/lambda)
comp VaR = ( ( -%invnormal(.01) * (hhat)^(1.0/lambda) * value ) + fmu ) / value; * DIVIDE BY value BECAUSE VALUE <> 1
comp ES = ( ( (hhat)^(1.0/lambda) * %density(%invnormal(.01))/.01 * value ) + fmu ) / value; * DIVIDE BY value BECAUSE VALUE <> 1
comp hat_1 = (hhat)^(1.0/lambda)
comp VaR_1 = VaR
comp ES_1 = ES
disp 'sigma=' hat_1
disp 'VaR= ' VaR_1
disp 'ES= ' ES_1