following with hamao et al.(1990), I estimate the spillover effect between USA and China,eg, Dowjones(DJ) and Shanghai composite index (SCI).
I used the two-stages method with MA(1)-GARCH(1,1)-M. Firstly, I estimate individul market with index of open to close. Secondly, I take the square residual derived from first stage as exogenous varible and append it to second market's conditional variance, append the return of first market to second market 's equation.
In seond estimation,all prarameter's T values are huge, errors very small, p value zero.
I guess such estimation anormal.
Code: Select all
open data "e:\my docs\working\china_us\dj_sci.xls"
data(format=xls,org=columns) 1 1157 dj_open dj_close sci_open sci_close
*
set scico = 100.0*log(sci_open/sci_close{1})
set scioc = 100.0*log(sci_close/sci_open)
set scicc = 100.0*log(sci_close/sci_close{1})
set djco = 100.0*log(dj_open/dj_close{1})
set djoc = 100.0*log(dj_close/dj_open)
set djcc = 100.0*log(dj_close/dj_close{1})
set djoc2 = 1.0 * djoc{1}
* stocks spillover from china to US MA(1)-garch-M
* firstly, individul china market ma(1)-garch-M
garch(p=1,q=1,regressors,resids=sci_u,hseries=sci_h) / scioc
# constant %mvgavge{1} %garchv
@regcrits
set sci_u2 = sci_u * sci_u
* secondly, introduce scioc and sci_u2 as exogenous varible both in mean and variance equation of US stocks market.
garch(p=1,q=1,regressors,xreg,method=bfgs,iters=100,$
pmethod=simplex, piters=10,resids=dj_u,hseries=dj_h) / djco
# constant %mvgavge scioc %garchv
# sci_u2
@regcrits
set dj_su = dj_u / sqrt(dj_h)
@bdindtests(number=12) dj_su
set sci_su = sci_u / sqrt(sci_h)
@bdindtests(number=12) sci_su
* US(-1) to china ma(1)-garch
garch(p=1,q=1,regressors,resids=dj_u,hseries=dj_h) / djoc2
# constant %mvgavge{1} %mvgavge{2}
@regcrits
set dj_u2 = dj_u * dj_u
garch(p=1,q=1,regressors,xreg,method=bfgs,iters=100,$
pmethod=simplex, piters=5,resids=sci_u,hseries=sci_h) / scico
# constant %mvgavge djoc2 %garchv
# dj_u2
@regcrits
set dj_su = dj_u / sqrt(dj_h)
@bdindtests(number=12) dj_su
set sci_su = sci_u / sqrt(sci_h)
@bdindtests(number=12) sci_su
- GARCH Model - Estimation by BFGS
Convergence in 4 Iterations. Final criterion was 0.0000000 <= 0.0000100
Dependent Variable DJCO
Usable Observations 1156
Log Likelihood 287.6747
Variable Coeff Std Error T-Stat Signif
*************************************************************************************
1. Constant 0.0264 5.6931e-007 46380.43427 0.00000000
2. Mvg Avge 0.8277 3.3995e-006 243485.65617 0.00000000
3. SCIOC -0.1444 6.7860e-007 -212779.25373 0.00000000
4. GARCH-V -0.1045 2.0053e-006 -52115.00421 0.00000000
5. C 0.0136 7.3188e-007 18591.52282 0.00000000
6. A 0.0466 1.5554e-006 29964.35221 0.00000000
7. B 0.5844 8.4330e-007 693006.06766 0.00000000
8. SCI_U2 2.5194e-003 3.2238e-007 7814.77028 0.00000000
Information Criteria
AIC -0.484
SBC -0.449
Hannan-Quinn -0.471
(log) FPE -0.484