VAR-GARCH-M

Discussions of ARCH, GARCH, and related models
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

VAR-GARCH-M

Unread post by economics2012 »

Hi,

I am using a bivariate garch in mean model to examine the effect of oil price uncertainty on real stock returns. I am using monthly data for real oil prices and real stock returns for the period 1973:1 - 2009:12.

The results show a positive effect of oil price uncertainty on stock returns (weird results), and I wonder whether I have errors in the code!
Last edited by economics2012 on Wed May 02, 2012 12:38 pm, edited 3 times in total.
moderator
Site Admin
Posts: 269
Joined: Thu Oct 19, 2006 4:33 pm

Re: VAR-GARCH-M

Unread post by moderator »

You'll probably need to provide more details if you want anyone to be able to help. For example, can you post the complete estimation results, along with a description of what the various variables are (unless it is completely obvious from the variable names)? You may also want to post the data set so others can try to repeat the estimation.

Also, can we assume that you've tested the OLS residuals for GARCH effects?

Thanks,
Tom Maycock
Estima
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

Hi Tom,

Here are my complete estimation results.

The variables used are: oilgrow which stand for: real oil price growth , and stock returns.

Code: Select all

VAR/System - Estimation by Least Squares
Monthly Data From 1974:01 To 2009:12
Usable Observations                       432

Dependent Variable OILGROW
Mean of Dependent Variable       0.2369802905
Std Error of Dependent Variable  7.0912551842
Standard Error of Estimate       6.1203682923
Sum of Squared Residuals         15245.775570
Durbin-Watson Statistic                1.9786

    Variable                        Coeff      Std Error      T-Stat      Signif
************************************************************************************
1.  OILGROW{1}                    0.520215612  0.049304475     10.55108  0.00000000
2.  OILGROW{2}                   -0.056023448  0.055598300     -1.00765  0.31422274
3.  OILGROW{3}                   -0.047396997  0.055730447     -0.85047  0.39556464
4.  OILGROW{4}                   -0.012540444  0.055509720     -0.22591  0.82138142
5.  OILGROW{5}                   -0.013774081  0.055804895     -0.24683  0.80516759
6.  OILGROW{6}                   -0.156653647  0.056013501     -2.79671  0.00540738
7.  OILGROW{7}                    0.076372676  0.056348410      1.35537  0.17605290
8.  OILGROW{8}                   -0.007260344  0.056523610     -0.12845  0.89785791
9.  OILGROW{9}                   -0.013793027  0.056821586     -0.24274  0.80832699
10. OILGROW{10}                   0.034771912  0.057106989      0.60889  0.54293661
11. OILGROW{11}                   0.077203440  0.057275340      1.34794  0.17842902
12. OILGROW{12}                  -0.110411073  0.050948530     -2.16711  0.03080585
13. STOCKRETURNS{1}               0.071504797  0.063697545      1.12257  0.26228298
14. STOCKRETURNS{2}               0.009777206  0.063760930      0.15334  0.87820486
15. STOCKRETURNS{3}               0.174765054  0.063528975      2.75095  0.00620757
16. STOCKRETURNS{4}              -0.079545208  0.064202272     -1.23898  0.21606765
17. STOCKRETURNS{5}               0.019224822  0.063627290      0.30215  0.76269402
18. STOCKRETURNS{6}              -0.031107333  0.063744588     -0.48800  0.62581291
19. STOCKRETURNS{7}              -0.017301692  0.063611910     -0.27199  0.78576897
20. STOCKRETURNS{8}               0.006381151  0.063626547      0.10029  0.92016292
21. STOCKRETURNS{9}               0.022956458  0.063569084      0.36113  0.71819253
22. STOCKRETURNS{10}              0.031585505  0.063681602      0.49599  0.62016845
23. STOCKRETURNS{11}             -0.008874725  0.063669535     -0.13939  0.88921305
24. STOCKRETURNS{12}             -0.054992978  0.063458035     -0.86660  0.38666969
25. Constant                      0.163708463  0.296075836      0.55293  0.58061664
26. SQRTHOIL                      0.000000000  0.000000000      0.00000  0.00000000

    F-Tests, Dependent Variable OILGROW
              Variable           F-Statistic     Signif
    *******************************************************
    OILGROW                           13.3676    0.0000000
    STOCKRETURNS                       0.9399    0.5066601


Dependent Variable STOCKRETURNS
Mean of Dependent Variable       0.0211076390
Std Error of Dependent Variable  4.8051892243
Standard Error of Estimate       4.7505842819
Sum of Squared Residuals         9185.1967649
Durbin-Watson Statistic                1.9954

    Variable                        Coeff      Std Error      T-Stat      Signif
************************************************************************************
1.  OILGROW{1}                   -0.062631622  0.038269767     -1.63658  0.10249076
2.  OILGROW{2}                    0.081653285  0.043154986      1.89209  0.05918799
3.  OILGROW{3}                    0.004278068  0.043257558      0.09890  0.92126827
4.  OILGROW{4}                   -0.071395226  0.043086231     -1.65703  0.09828379
5.  OILGROW{5}                    0.016035537  0.043315344      0.37020  0.71142267
6.  OILGROW{6}                   -0.025565076  0.043477262     -0.58801  0.55685153
7.  OILGROW{7}                    0.000388776  0.043737216      0.00889  0.99291212
8.  OILGROW{8}                   -0.087855469  0.043873205     -2.00249  0.04589541
9.  OILGROW{9}                    0.045515656  0.044104491      1.03200  0.30268686
10. OILGROW{10}                  -0.073375723  0.044326019     -1.65536  0.09862138
11. OILGROW{11}                  -0.003679140  0.044456693     -0.08276  0.93408477
12. OILGROW{12}                  -0.056065357  0.039545870     -1.41773  0.15703480
13. STOCKRETURNS{1}               0.111850757  0.049441560      2.26228  0.02420656
14. STOCKRETURNS{2}              -0.069348343  0.049490759     -1.40124  0.16190489
15. STOCKRETURNS{3}               0.031606247  0.049310717      0.64096  0.52190875
16. STOCKRETURNS{4}              -0.003463371  0.049833325     -0.06950  0.94462648
17. STOCKRETURNS{5}               0.047549704  0.049387029      0.96280  0.33622087
18. STOCKRETURNS{6}              -0.064160867  0.049478074     -1.29675  0.19545069
19. STOCKRETURNS{7}               0.023529918  0.049375091      0.47655  0.63393519
20. STOCKRETURNS{8}              -0.014721206  0.049386452     -0.29808  0.76579278
21. STOCKRETURNS{9}              -0.032231345  0.049341850     -0.65323  0.51397987
22. STOCKRETURNS{10}              0.047474881  0.049429185      0.96046  0.33739271
23. STOCKRETURNS{11}             -0.020479281  0.049419819     -0.41439  0.67880383
24. STOCKRETURNS{12}              0.044874198  0.049255654      0.91105  0.36281006
25. Constant                      0.066856129  0.229811858      0.29092  0.77126315
26. SQRTHOIL                      0.000000000  0.000000000      0.00000  0.00000000

    F-Tests, Dependent Variable STOCKRETURNS
              Variable           F-Statistic     Signif
    *******************************************************
    OILGROW                            1.7123    0.0617950
    STOCKRETURNS                       0.8971    0.5499893


Simplex Optimization, Trial 0. Function Calls: 60
Old Function = -2778.401291     New Function = -2777.386240
New Coefficients:
      0.000000       0.520216      -0.056023      -0.047397      -0.012540
     -0.013774      -0.156654       0.076373      -0.007260      -0.013793
      0.034772       0.077203      -0.110411       0.071505       0.009777
      0.157289      -0.079545       0.019225      -0.031107      -0.017302
      0.006381       0.022956       0.031586      -0.008875      -0.054993
      0.163708       0.000000      -0.062632       0.081653       0.004278
     -0.071395       0.016036      -0.025565       0.000389      -0.087855
      0.045516      -0.073376      -0.003679      -0.056065       0.111851
     -0.069348       0.031606      -0.003463       0.047550      -0.064161
      0.023530      -0.014721      -0.032231       0.047475      -0.020479
      0.044874       0.066856       0.000000       7.058229       0.200000
      0.600000       4.252406       0.200000       0.600000

Simplex Optimization, Trial 1. Function Calls: 62
Old Function = -2777.386240     New Function = -2735.504304
New Coefficients:
      0.000508       0.517570      -0.055739      -0.047156      -0.012477
     -0.013704      -0.155857       0.075984      -0.007223      -0.013723
      0.034595       0.076811      -0.109850       0.071141       0.009727
      0.173876      -0.079141       0.019127      -0.030949      -0.017214
      0.006349       0.022840       0.031425      -0.008830      -0.054713
      0.162876       0.000508      -0.062313       0.081238       0.004256
     -0.071032       0.015954      -0.025435       0.000387      -0.087409
      0.045284      -0.073003      -0.003660      -0.055780       0.111282
     -0.068996       0.031446      -0.003446       0.047308      -0.063835
      0.023410      -0.014646      -0.032067       0.047233      -0.020375
      0.044646       0.066516       0.000508       8.469875       0.198983
      0.596949       4.230784       0.198983       0.596949

Simplex Optimization, Trial 16. Function Calls: 137
Old Function = -2735.504304     New Function = -2704.644081
New Coefficients:
      0.000000       0.520216      -0.056023      -0.047397      -0.012540
     -0.013774      -0.156654       0.076373      -0.007260      -0.013793
      0.034772       0.077203      -0.110411       0.071505       0.009777
      0.174765      -0.079545       0.019225      -0.031107      -0.017302
      0.006381       0.022956       0.031586      -0.008875      -0.054993
      0.163708       0.000000      -0.062632       0.081653       0.004278
     -0.071395       0.016036      -0.025565       0.000389      -0.087855
      0.045516      -0.073376      -0.003679      -0.056065       0.111851
     -0.069348       0.031606      -0.003463       0.047550      -0.064161
      0.023530      -0.014721      -0.032231       0.047475      -0.020479
      0.044874       0.066856       0.010000       9.881521       0.200000
      0.600000       4.252406       0.200000       0.600000

Simplex Optimization, Trial 32. Function Calls: 213
Old Function = -2704.644081     New Function = -2683.913998
New Coefficients:
      0.000508       0.517570      -0.055739      -0.047156      -0.012477
     -0.013704      -0.155857       0.075984      -0.007223      -0.013723
      0.034595       0.076811      -0.109850       0.071141       0.009727
      0.173876      -0.079141       0.019127      -0.030949      -0.017214
      0.006349       0.022840       0.031425      -0.008830      -0.054713
      0.162876       0.000508      -0.062313       0.081238       0.004256
     -0.071032       0.015954      -0.025435       0.000387      -0.087409
      0.045284      -0.073003      -0.003660      -0.055780       0.111282
     -0.068996       0.031446      -0.003446       0.047308      -0.063835
      0.023410      -0.014646      -0.032067       0.047233      -0.020375
      0.044646       0.066516       0.000508      11.293167       0.198983
      0.596949       4.230784       0.198983       0.596949



Simplex Optimization, Trial 577. Function Calls: 1819
Old Function = -2610.909923     New Function = -2608.539051
New Coefficients:
      0.002574       0.509967      -0.054616      -0.047515      -0.012541
     -0.013641      -0.155869       0.078931      -0.006997      -0.013490
      0.031247       0.075883      -0.123796       0.069329       0.009509
      0.142970      -0.078219       0.019927      -0.027683      -0.016070
      0.006350       0.022800       0.031360      -0.009205      -0.008627
      0.169289      -0.003568      -0.063623       0.079332       0.004336
     -0.068768       0.016136      -0.026307       0.000382      -0.084914
      0.044794      -0.073696      -0.003742      -0.054623       0.106221
     -0.066982       0.031509      -0.003578       0.046036      -0.065307
      0.023652      -0.015249      -0.032593       0.047764      -0.020895
      0.044653       0.066156       0.011425      14.862771       0.785629
      0.301812       4.130916       0.196437       0.657537

Non-Linear Optimization, Iteration 1. Function Calls 1893.
 Cosine of Angle between Direction and Gradient  0.6036428. Alpha used was 0.000000
 Adjusted squared norm of gradient 19.30759
 Diagnostic measure (0=perfect) 0.0000
 Subiterations 1. Distance scale  1.000000000
Old Function = -2608.539051     New Function = -2599.349002
New Coefficients:
      0.055356       0.507335      -0.056781      -0.050454      -0.007777
     -0.011781      -0.155780       0.084212      -0.020437      -0.041736
      0.027890       0.068036      -0.117581       0.041246      -0.014164
      0.105471      -0.086404       0.018226      -0.019992       0.011165
      0.015916       0.037352      -0.034349      -0.024337       0.027013
      0.332242       0.000000      -0.094167       0.045066       0.008161
     -0.050047       0.029877      -0.035787       0.013769      -0.072354
      0.035727      -0.075542      -0.007173      -0.031695       0.088860
     -0.020880       0.013768      -0.038687       0.033296      -0.067836
      0.015371      -0.029024      -0.036324       0.041881      -0.008040
      0.015062       0.060676       0.027382      14.945463       0.819208
      0.000000       4.108014       0.169310       0.655544

Non-Linear Optimization, Iteration 2. Function Calls 1954.
 Cosine of Angle between Direction and Gradient  0.2010777. Alpha used was 0.000000
 Adjusted squared norm of gradient 8.660941
 Diagnostic measure (0=perfect) 0.0000
 Subiterations 1. Distance scale  1.000000000
Old Function = -2599.349002     New Function = -2596.634363
New Coefficients:
      0.074416       0.501488      -0.067600      -0.061792      -0.007641
     -0.010216      -0.153992       0.103579      -0.014355      -0.059174
      0.021676       0.048216      -0.112987       0.021575      -0.028925
      0.080070      -0.097519       0.024511      -0.008702       0.016514
      0.016357       0.036656      -0.039998      -0.015240       0.043004
      0.352439       0.000000      -0.046618       0.057530       0.024202
     -0.046646       0.026829      -0.055762       0.021026      -0.064462
      0.032103      -0.057572       0.002259      -0.008807       0.060172
     -0.019467       0.012204      -0.042978       0.041637      -0.058994
      0.017351      -0.027583      -0.040515       0.033590      -0.006256
     -0.006670       0.052338       0.045787      14.542781       0.857614
      0.000000       4.111264       0.154819       0.655882

Non-Linear Optimization, Iteration 3. Function Calls 2015.
 Cosine of Angle between Direction and Gradient  0.0780976. Alpha used was 0.000000
 Adjusted squared norm of gradient 6.895031
 Diagnostic measure (0=perfect) 0.0000
 Subiterations 1. Distance scale  1.000000000
Old Function = -2596.634363     New Function = -2594.167546
New Coefficients:
      0.083703       0.509456      -0.071877      -0.069334      -0.006062
     -0.009672      -0.161064       0.105383      -0.012909      -0.070766
      0.020302       0.035980      -0.107331       0.017244      -0.027163
      0.071929      -0.104700       0.031984      -0.001025       0.011712
      0.022082       0.035854      -0.026055      -0.010232       0.036253
      0.300744       0.000000      -0.036466       0.043943       0.016455
     -0.052065       0.033340      -0.058015       0.036193      -0.055850
      0.026906      -0.052720      -0.013253      -0.025869       0.073019
     -0.020417       0.032967      -0.031669       0.043272      -0.059409
      0.021111      -0.018681      -0.041689       0.034904      -0.005521
     -0.007006      -0.018426       0.050201      13.868919       0.891285
      0.000000       4.156036       0.157391       0.659005



Non-Linear Optimization, Iteration 27. Function Calls 3485.
 Cosine of Angle between Direction and Gradient  0.1037753. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.1728131
 Diagnostic measure (0=perfect) 0.7724
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.675250     New Function = -2588.623525
New Coefficients:
      0.095899       0.524238      -0.027220      -0.119051       0.027656
     -0.017375      -0.155211       0.056500       0.022205      -0.085367
      0.063674      -0.014771      -0.108334      -0.004291       0.011084
      0.041451      -0.108275       0.040994       0.004199       0.023873
      0.037537       0.020265      -0.055681      -0.005112       0.029246
      0.228057       0.000000      -0.031989       0.023866       0.044970
     -0.061442       0.038157      -0.064987       0.056494      -0.082748
      0.032033      -0.037939       0.012323      -0.032148       0.087160
     -0.012474       0.022819      -0.037020       0.041326      -0.055407
      0.031656      -0.033960      -0.012982       0.043190      -0.015109
     -0.011858      -0.256649       0.077899      11.156172       0.982766
      0.000000       0.822560       0.129347       0.846681

Non-Linear Optimization, Iteration 28. Function Calls 3546.
 Cosine of Angle between Direction and Gradient  0.1380861. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.03112548
 Diagnostic measure (0=perfect) 0.4635
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.623525     New Function = -2588.606437
New Coefficients:
      0.096216       0.525013      -0.028507      -0.117273       0.026092
     -0.017299      -0.154819       0.057367       0.021613      -0.084859
      0.062868      -0.014193      -0.108342      -0.003726       0.010981
      0.041400      -0.109128       0.041704       0.003784       0.024443
      0.037761       0.020251      -0.055902      -0.005129       0.028963
      0.230678       0.000000      -0.032645       0.024039       0.044853
     -0.061384       0.038701      -0.065337       0.056465      -0.082263
      0.031888      -0.037842       0.013421      -0.032111       0.087456
     -0.012475       0.022429      -0.036202       0.041372      -0.055659
      0.032305      -0.034142      -0.012703       0.042915      -0.015224
     -0.012735      -0.266757       0.078550      11.152920       0.983035
      0.000000       0.789128       0.129023       0.848427

Non-Linear Optimization, Iteration 29. Function Calls 3607.
 Cosine of Angle between Direction and Gradient  0.1099209. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.01860308
 Diagnostic measure (0=perfect) 0.2781
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.606437     New Function = -2588.593624
New Coefficients:
      0.096049       0.527689      -0.030678      -0.114108       0.024130
     -0.017395      -0.153497       0.057169       0.022349      -0.084860
      0.063444      -0.014105      -0.108920      -0.003474       0.010523
      0.041069      -0.110081       0.043103       0.003158       0.025429
      0.038678       0.019679      -0.056866      -0.004638       0.028775
      0.232362       0.000000      -0.033464       0.024792       0.044498
     -0.061396       0.039629      -0.065708       0.056220      -0.081343
      0.031873      -0.038185       0.014704      -0.032278       0.087148
     -0.012402       0.022267      -0.035258       0.041599      -0.055840
      0.033048      -0.034354      -0.012268       0.042830      -0.015040
     -0.013391      -0.284639       0.081450      11.127535       0.984034
      0.000000       0.743873       0.128685       0.851075

Non-Linear Optimization, Iteration 30. Function Calls 3668.
 Cosine of Angle between Direction and Gradient  0.1691721. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.01406628
 Diagnostic measure (0=perfect) 0.1668
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.593624     New Function = -2588.588710
New Coefficients:
      0.096010       0.528449      -0.032010      -0.112945       0.023528
     -0.017492      -0.152657       0.057021       0.023263      -0.085722
      0.063686      -0.014062      -0.108955      -0.003283       0.010703
      0.041631      -0.110629       0.043447       0.002855       0.025647
      0.038392       0.019845      -0.056421      -0.004637       0.028683
      0.233952       0.000000      -0.033783       0.025058       0.044110
     -0.061423       0.039724      -0.065961       0.055941      -0.081099
      0.031459      -0.038355       0.014862      -0.032396       0.087328
     -0.012624       0.022412      -0.035569       0.041432      -0.056015
      0.032973      -0.034338      -0.012509       0.042979      -0.015144
     -0.013247      -0.289128       0.081189      11.131470       0.983780
      0.000000       0.752197       0.128427       0.850742

Non-Linear Optimization, Iteration 31. Function Calls 3729.
 Cosine of Angle between Direction and Gradient  0.1740419. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.008398739
 Diagnostic measure (0=perfect) 0.1001
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.588710     New Function = -2588.584702
New Coefficients:
      0.095843       0.529501      -0.033363      -0.111246       0.022815
     -0.017597      -0.151715       0.056354       0.024495      -0.086965
      0.064606      -0.013881      -0.108822      -0.003212       0.010711
      0.042046      -0.110873       0.043867       0.002312       0.025749
      0.038222       0.020246      -0.056083      -0.004744       0.028726
      0.235773       0.000000      -0.033591       0.025278       0.043948
     -0.061458       0.039604      -0.065882       0.055786      -0.080990
      0.031194      -0.038491       0.014734      -0.032652       0.087369
     -0.012709       0.022672      -0.035685       0.041466      -0.055961
      0.032803      -0.034368      -0.012727       0.043195      -0.014982
     -0.012706      -0.289962       0.081976      11.141576       0.983306
      0.000000       0.764931       0.128209       0.850256

Non-Linear Optimization, Iteration 32. Function Calls 3790.
 Cosine of Angle between Direction and Gradient  0.1228157. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.003486388
 Diagnostic measure (0=perfect) 0.0601
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.584702     New Function = -2588.583851
New Coefficients:
      0.095750       0.530206      -0.033756      -0.110685       0.022799
     -0.017573      -0.151230       0.055522       0.025648      -0.087552
      0.065456      -0.014301      -0.108872      -0.003584       0.010735
      0.042100      -0.110536       0.043990       0.002258       0.025817
      0.038255       0.019871      -0.056085      -0.004501       0.028762
      0.235850       0.000000      -0.033460       0.025208       0.044047
     -0.061549       0.039407      -0.065595       0.055766      -0.081332
      0.031269      -0.038407       0.014493      -0.032639       0.087266
     -0.012644       0.022623      -0.035901       0.041332      -0.055746
      0.032668      -0.034296      -0.012808       0.043117      -0.015065
     -0.012342      -0.292479       0.082289      11.135539       0.983340
      0.000000       0.770127       0.128129       0.850151

Non-Linear Optimization, Iteration 33. Function Calls 3851.
 Cosine of Angle between Direction and Gradient  0.1184611. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.0004671975
 Diagnostic measure (0=perfect) 0.0360
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583851     New Function = -2588.583619
New Coefficients:
      0.095826       0.530151      -0.033883      -0.110572       0.022753
     -0.017493      -0.151313       0.055514       0.025637      -0.087601
      0.065337      -0.014119      -0.108758      -0.003573       0.010716
      0.042172      -0.110491       0.043963       0.002129       0.025775
      0.038208       0.020024      -0.055973      -0.004673       0.028782
      0.236169       0.000000      -0.033249       0.025064       0.044186
     -0.061529       0.039295      -0.065472       0.055911      -0.081450
      0.031364      -0.038281       0.014386      -0.032603       0.087311
     -0.012619       0.022565      -0.035819       0.041412      -0.055660
      0.032627      -0.034322      -0.012749       0.043077      -0.015036
     -0.012407      -0.290088       0.082092      11.140185       0.983187
      0.000000       0.766869       0.128094       0.850346

Non-Linear Optimization, Iteration 34. Function Calls 3912.
 Cosine of Angle between Direction and Gradient  0.1295045. Alpha used was 0.000000
 Adjusted squared norm of gradient 0.0001071594
 Diagnostic measure (0=perfect) 0.0216
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583619     New Function = -2588.583564
New Coefficients:
      0.095847       0.530103      -0.033819      -0.110586       0.022734
     -0.017466      -0.151331       0.055482       0.025643      -0.087535
      0.065272      -0.014108      -0.108736      -0.003564       0.010725
      0.042102      -0.110448       0.043979       0.002112       0.025796
      0.038202       0.019964      -0.055984      -0.004665       0.028764
      0.236069       0.000000      -0.033226       0.024976       0.044243
     -0.061504       0.039245      -0.065396       0.055947      -0.081540
      0.031438      -0.038204       0.014369      -0.032538       0.087324
     -0.012576       0.022512      -0.035798       0.041442      -0.055618
      0.032658      -0.034323      -0.012682       0.043024      -0.015062
     -0.012512      -0.289192       0.081928      11.138885       0.983160
      0.000000       0.764623       0.128073       0.850462

Non-Linear Optimization, Iteration 35. Function Calls 3973.
 Cosine of Angle between Direction and Gradient  0.0959132. Alpha used was 0.000000
 Adjusted squared norm of gradient 4.232889e-005
 Diagnostic measure (0=perfect) 0.0130
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583564     New Function = -2588.583544
New Coefficients:
      0.095864       0.530113      -0.033825      -0.110561       0.022693
     -0.017448      -0.151339       0.055465       0.025661      -0.087503
      0.065245      -0.014117      -0.108761      -0.003561       0.010732
      0.042088      -0.110441       0.043976       0.002121       0.025838
      0.038231       0.019928      -0.055996      -0.004671       0.028759
      0.236100       0.000000      -0.033215       0.024946       0.044270
     -0.061476       0.039214      -0.065362       0.055961      -0.081561
      0.031500      -0.038173       0.014319      -0.032504       0.087326
     -0.012588       0.022479      -0.035800       0.041463      -0.055621
      0.032657      -0.034323      -0.012644       0.043006      -0.015059
     -0.012570      -0.288540       0.081781      11.137164       0.983179
      0.000000       0.764080       0.128073       0.850494

Non-Linear Optimization, Iteration 36. Function Calls 4034.
 Cosine of Angle between Direction and Gradient  0.0980764. Alpha used was 0.000000
 Adjusted squared norm of gradient 2.070718e-005
 Diagnostic measure (0=perfect) 0.0078
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583544     New Function = -2588.583533
New Coefficients:
      0.095856       0.530123      -0.033825      -0.110521       0.022633
     -0.017448      -0.151322       0.055453       0.025672      -0.087489
      0.065246      -0.014128      -0.108789      -0.003547       0.010734
      0.042058      -0.110454       0.043989       0.002130       0.025865
      0.038240       0.019893      -0.056018      -0.004658       0.028759
      0.236050       0.000000      -0.033218       0.024933       0.044257
     -0.061454       0.039200      -0.065354       0.055944      -0.081571
      0.031528      -0.038172       0.014302      -0.032478       0.087328
     -0.012576       0.022483      -0.035799       0.041468      -0.055651
      0.032656      -0.034317      -0.012618       0.043006      -0.015067
     -0.012603      -0.287781       0.081664      11.135754       0.983196
      0.000000       0.764295       0.128075       0.850481

Non-Linear Optimization, Iteration 37. Function Calls 4095.
 Cosine of Angle between Direction and Gradient  0.1084149. Alpha used was 0.000000
 Adjusted squared norm of gradient 1.173717e-005
 Diagnostic measure (0=perfect) 0.0047
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583533     New Function = -2588.583527
New Coefficients:
      0.095852       0.530133      -0.033823      -0.110486       0.022582
     -0.017453      -0.151307       0.055455       0.025671      -0.087485
      0.065266      -0.014140      -0.108806      -0.003537       0.010740
      0.042044      -0.110464       0.044001       0.002150       0.025882
      0.038252       0.019886      -0.056027      -0.004653       0.028765
      0.236057       0.000000      -0.033228       0.024943       0.044249
     -0.061438       0.039198      -0.065370       0.055926      -0.081551
      0.031536      -0.038187       0.014295      -0.032481       0.087324
     -0.012590       0.022478      -0.035796       0.041466      -0.055682
      0.032646      -0.034328      -0.012615       0.043015      -0.015063
     -0.012592      -0.287130       0.081571      11.134854       0.983211
      0.000000       0.764711       0.128080       0.850456

Non-Linear Optimization, Iteration 38. Function Calls 4156.
 Cosine of Angle between Direction and Gradient  0.1684459. Alpha used was 0.000000
 Adjusted squared norm of gradient 3.899427e-006
 Diagnostic measure (0=perfect) 0.0028
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583527     New Function = -2588.583525
New Coefficients:
      0.095849       0.530129      -0.033826      -0.110474       0.022565
     -0.017453      -0.151305       0.055461       0.025663      -0.087487
      0.065281      -0.014153      -0.108805      -0.003539       0.010748
      0.042043      -0.110463       0.043998       0.002159       0.025880
      0.038250       0.019887      -0.056033      -0.004656       0.028771
      0.236065       0.000000      -0.033225       0.024943       0.044240
     -0.061441       0.039206      -0.065385       0.055924      -0.081548
      0.031524      -0.038199       0.014305      -0.032488       0.087326
     -0.012590       0.022489      -0.035790       0.041458      -0.055694
      0.032640      -0.034328      -0.012626       0.043022      -0.015069
     -0.012577      -0.286838       0.081541      11.134762       0.983218
      0.000000       0.764857       0.128082       0.850447

Non-Linear Optimization, Iteration 39. Function Calls 4217.
 Cosine of Angle between Direction and Gradient  0.2833513. Alpha used was 0.000000
 Adjusted squared norm of gradient 8.387825e-007
 Diagnostic measure (0=perfect) 0.0017
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583525     New Function = -2588.583525
New Coefficients:
      0.095850       0.530128      -0.033821      -0.110473       0.022563
     -0.017453      -0.151306       0.055462       0.025657      -0.087485
      0.065292      -0.014163      -0.108796      -0.003543       0.010752
      0.042042      -0.110455       0.043998       0.002164       0.025876
      0.038248       0.019888      -0.056032      -0.004658       0.028772
      0.236066       0.000000      -0.033225       0.024945       0.044244
     -0.061445       0.039213      -0.065394       0.055928      -0.081543
      0.031514      -0.038204       0.014316      -0.032498       0.087326
     -0.012595       0.022485      -0.035789       0.041456      -0.055691
      0.032639      -0.034336      -0.012638       0.043023      -0.015070
     -0.012566      -0.286732       0.081527      11.134812       0.983218
      0.000000       0.764829       0.128082       0.850449

Non-Linear Optimization, Iteration 40. Function Calls 4278.
 Cosine of Angle between Direction and Gradient  0.2353028. Alpha used was 0.000000
 Adjusted squared norm of gradient 2.31118e-007
 Diagnostic measure (0=perfect) 0.0010
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583525     New Function = -2588.583525
New Coefficients:
      0.095852       0.530126      -0.033822      -0.110474       0.022566
     -0.017451      -0.151308       0.055462       0.025655      -0.087481
      0.065294      -0.014168      -0.108791      -0.003545       0.010755
      0.042041      -0.110451       0.043996       0.002166       0.025875
      0.038246       0.019888      -0.056032      -0.004659       0.028772
      0.236075       0.000000      -0.033224       0.024943       0.044246
     -0.061448       0.039217      -0.065396       0.055933      -0.081545
      0.031510      -0.038203       0.014321      -0.032502       0.087326
     -0.012595       0.022485      -0.035789       0.041457      -0.055687
      0.032641      -0.034337      -0.012642       0.043022      -0.015071
     -0.012567      -0.286718       0.081524      11.134813       0.983218
      0.000000       0.764773       0.128081       0.850452

Non-Linear Optimization, Iteration 41. Function Calls 4339.
 Cosine of Angle between Direction and Gradient  0.3163347. Alpha used was 0.000000
 Adjusted squared norm of gradient 4.465044e-008
 Diagnostic measure (0=perfect) 0.0006
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583525     New Function = -2588.583525
New Coefficients:
      0.095852       0.530128      -0.033822      -0.110474       0.022567
     -0.017451      -0.151308       0.055461       0.025654      -0.087479
      0.065294      -0.014169      -0.108790      -0.003546       0.010755
      0.042041      -0.110450       0.043996       0.002165       0.025875
      0.038245       0.019886      -0.056032      -0.004659       0.028771
      0.236072       0.000000      -0.033223       0.024942       0.044248
     -0.061449       0.039218      -0.065396       0.055935      -0.081547
      0.031511      -0.038203       0.014322      -0.032502       0.087326
     -0.012595       0.022484      -0.035790       0.041459      -0.055686
      0.032642      -0.034338      -0.012642       0.043021      -0.015071
     -0.012570      -0.286719       0.081523      11.134805       0.983218
      0.000000       0.764757       0.128081       0.850453

Non-Linear Optimization, Iteration 42. Function Calls 4400.
 Cosine of Angle between Direction and Gradient  0.1460616. Alpha used was 0.000000
 Adjusted squared norm of gradient 9.944952e-009
 Diagnostic measure (0=perfect) 0.0004
 Subiterations 1. Distance scale  1.000000000
Old Function = -2588.583525     New Function = -2588.583525
New Coefficients:
      0.095852       0.530128      -0.033823      -0.110474       0.022568
     -0.017452      -0.151307       0.055461       0.025653      -0.087478
      0.065294      -0.014170      -0.108789      -0.003546       0.010756
      0.042041      -0.110450       0.043996       0.002165       0.025875
      0.038246       0.019887      -0.056032      -0.004659       0.028771
      0.236073       0.000000      -0.033223       0.024942       0.044248
     -0.061449       0.039218      -0.065396       0.055936      -0.081547
      0.031512      -0.038203       0.014323      -0.032503       0.087326
     -0.012595       0.022484      -0.035791       0.041459      -0.055685
      0.032643      -0.034338      -0.012642       0.043021      -0.015071
     -0.012571      -0.286718       0.081523      11.134788       0.983218
      0.000000       0.764757       0.128081       0.850453

MAXIMIZE - Estimation by BFGS
Convergence in    42 Iterations. Final criterion was  0.0000016 <=  0.0000100
Monthly Data From 1974:01 To 2009:12
Usable Observations                       432
Function Value                     -2588.5835

    Variable                        Coeff      Std Error      T-Stat      Signif
************************************************************************************
1.  B                              0.09585250   0.03127439      3.06489  0.00217752
2.  BVEC(1)(1)                     0.53012820   0.05028247     10.54300  0.00000000
3.  BVEC(1)(2)                    -0.03382281   0.03860605     -0.87610  0.38097509
4.  BVEC(1)(3)                    -0.11047403   0.04279874     -2.58124  0.00984447
5.  BVEC(1)(4)                     0.02256768   0.04294121      0.52555  0.59920207
6.  BVEC(1)(5)                    -0.01745154   0.02681079     -0.65091  0.51510146
7.  BVEC(1)(6)                    -0.15130741   0.03258400     -4.64361  0.00000342
8.  BVEC(1)(7)                     0.05546113   0.03518137      1.57643  0.11492564
9.  BVEC(1)(8)                     0.02565334   0.04283871      0.59884  0.54928255
10. BVEC(1)(9)                    -0.08747772   0.03943955     -2.21802  0.02655347
11. BVEC(1)(10)                    0.06529450   0.03946081      1.65467  0.09799209
12. BVEC(1)(11)                   -0.01416972   0.03790634     -0.37381  0.70854675
13. BVEC(1)(12)                   -0.10878948   0.02934713     -3.70699  0.00020974
14. BVEC(1)(13)                   -0.00354579   0.03691264     -0.09606  0.92347369
15. BVEC(1)(14)                    0.01075567   0.04309607      0.24957  0.80291658
16. BVEC(1)(15)                    0.04204084   0.04085463      1.02903  0.30346331
17. BVEC(1)(16)                   -0.11045016   0.03602444     -3.06598  0.00216959
18. BVEC(1)(17)                    0.04399617   0.03620323      1.21526  0.22426875
19. BVEC(1)(18)                    0.00216526   0.04073171      0.05316  0.95760513
20. BVEC(1)(19)                    0.02587499   0.04265024      0.60668  0.54406413
21. BVEC(1)(20)                    0.03824552   0.04041933      0.94622  0.34403705
22. BVEC(1)(21)                    0.01988663   0.04163203      0.47768  0.63288071
23. BVEC(1)(22)                   -0.05603180   0.04212411     -1.33016  0.18346564
24. BVEC(1)(23)                   -0.00465893   0.03895077     -0.11961  0.90479144
25. BVEC(1)(24)                    0.02877134   0.03609311      0.79714  0.42536840
26. BVEC(1)(25)                    0.23607305   0.18802043      1.25557  0.20927144
27. BVEC(1)(26)                    0.00000000   0.00000000      0.00000  0.00000000
28. BVEC(2)(1)                    -0.03322330   0.03748393     -0.88633  0.37543728
29. BVEC(2)(2)                     0.02494214   0.03483301      0.71605  0.47396120
30. BVEC(2)(3)                     0.04424796   0.03268036      1.35396  0.17574850
31. BVEC(2)(4)                    -0.06144929   0.03087430     -1.99031  0.04655731
32. BVEC(2)(5)                     0.03921773   0.03170393      1.23700  0.21608746
33. BVEC(2)(6)                    -0.06539563   0.02848592     -2.29572  0.02169205
34. BVEC(2)(7)                     0.05593624   0.03049274      1.83441  0.06659292
35. BVEC(2)(8)                    -0.08154739   0.03420693     -2.38394  0.01712822
36. BVEC(2)(9)                     0.03151176   0.02892760      1.08933  0.27600745
37. BVEC(2)(10)                   -0.03820279   0.03021077     -1.26454  0.20603543
38. BVEC(2)(11)                    0.01432259   0.03342856      0.42845  0.66832083
39. BVEC(2)(12)                   -0.03250296   0.03313018     -0.98107  0.32655930
40. BVEC(2)(13)                    0.08732603   0.05644643      1.54706  0.12184870
41. BVEC(2)(14)                   -0.01259509   0.05471921     -0.23018  0.81795444
42. BVEC(2)(15)                    0.02248448   0.04855820      0.46304  0.64333428
43. BVEC(2)(16)                   -0.03579113   0.04925730     -0.72662  0.46746135
44. BVEC(2)(17)                    0.04145924   0.04796702      0.86433  0.38740773
45. BVEC(2)(18)                   -0.05568539   0.04603051     -1.20975  0.22637500
46. BVEC(2)(19)                    0.03264276   0.05147225      0.63418  0.52596227
47. BVEC(2)(20)                   -0.03433788   0.04887338     -0.70259  0.48231213
48. BVEC(2)(21)                   -0.01264198   0.03402305     -0.37157  0.71021234
49. BVEC(2)(22)                    0.04302130   0.04149468      1.03679  0.29983343
50. BVEC(2)(23)                   -0.01507078   0.04863744     -0.30986  0.75666767
51. BVEC(2)(24)                   -0.01257103   0.04561292     -0.27560  0.78285346
52. BVEC(2)(25)                   -0.28671814   0.40142566     -0.71425  0.47507283
53. BVEC(2)(26)                    0.08152284   0.06178002      1.31957  0.18697983
54. GARCHP(1)(1)                  11.13478778   1.41768408      7.85421  0.00000000
55. GARCHP(1)(2)                   0.98321750   0.02284533     43.03800  0.00000000
56. GARCHP(1)(3)                   0.00000000   0.00000000      0.00000  0.00000000
57. GARCHP(2)(1)                   0.76475712   0.47982621      1.59382  0.11097611
58. GARCHP(2)(2)                   0.12808063   0.01898348      6.74695  0.00000000
59. GARCHP(2)(3)                   0.85045337   0.02957501     28.75581  0.00000000

SIC for VAR    5632.52461
SIC for GARCH-M    5523.06731
I also attached the data file with three columns: date, oil growth and stock returns.

I believe line 53. of the last table shows the effect of oil price uncertainty on stock returns with a positive coefficient of 0.08152284 and t-statistics of 1.31957.

In regard of testing the OLS residuals for GARCH effects, I am not sure whether you meant what I got in the first table above!
Is there any RATS wizard for testing the OLS residuals for GARCH effects?

Thanks a lot,
Last edited by economics2012 on Wed May 30, 2012 1:03 pm, edited 1 time in total.
TomDoan
Posts: 7814
Joined: Wed Nov 01, 2006 4:36 pm

Re: VAR-GARCH-M

Unread post by TomDoan »

Note that what you're estimating isn't a standard VAR-GARCH-M, but Elder's specialized version. The "weird" result is a positive but insignificant coefficient so you probably shouldn't be that concerned. BTW, you are including in your data set the 1970's when (U.S.) oil prices were controlled and the stock market was weak.
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

Hi Tom,

Correct, I am following Elder's representation. I am examining oil price uncertainty on aggregate and sectoral level stock returns.

Results for automobile, retail and steel returns, for instance, show positive and significant results! I will attach the data set for some of the sectors.

What do you suggest in regards of the data?

thanks a lot
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

Hi Tom,

Attached are the data sets for three different returns, the automobile, steel and retail.

Best,
Last edited by economics2012 on Wed May 30, 2012 1:04 pm, edited 1 time in total.
TomDoan
Posts: 7814
Joined: Wed Nov 01, 2006 4:36 pm

Re: VAR-GARCH-M

Unread post by TomDoan »

A GARCH model doesn't describe the dynamics of the oil growth series very well. Instead of volatility clustering, you get about four really large spikes (two up, two down). Feed the generated standard deviation series into a regression and you have basically a dummy variable with four 1's and everything else 0's. That will be the same regardless of the other series that you use for stock returns. You're never going to get good statistical inference from a 4 data point dummy.
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

So you mean the problem is in the real price of oil that I cannot estimate a GARCH model? Elder and Serletis(2010), in their paper "Oil Price Uncertainty", Journal of Money, Credit and Banking, Vol. 42, No. 6, 1137-1159, have used the oil price-GDP bivariate VAR-GARCH-M model. They used quarterly data while mine is monthly.
Last edited by economics2012 on Mon Feb 20, 2012 8:51 pm, edited 1 time in total.
TomDoan
Posts: 7814
Joined: Wed Nov 01, 2006 4:36 pm

Re: VAR-GARCH-M

Unread post by TomDoan »

I'm not sure their GARCH model fit the oil price any better than yours did, but they are working with a target variable of quarterly GDP, which doesn't react as quickly as your stock price series. If the GARCH model doesn't fit oil prices well, then adding the predicted variance from a poorly-fitting model isn't likely to give useful information, plus much of the information from the past oil prices may already be priced in.

At any rate, the calculations are correct given your data.
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

Dear Tom,

I re-ran the GARCH model using daily data instead of monthly data. The results show POSITIVE and significant effect of oil price uncertainty on the Retail returns, and Entertainment returns. However, The results are supposed to be either negative or insignificant. For the aggregate returns and the other sectors, the results came out insignificant.

I attached below the data, code and results for the retail sector.

Your help is greatly appreciated,
Last edited by economics2012 on Wed May 02, 2012 12:42 pm, edited 2 times in total.
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

I need to check whether the mean in the above model is correctly specified or I still have GARCH effects using the daily data.

Any help is greatly appreciated,
TomDoan
Posts: 7814
Joined: Wed Nov 01, 2006 4:36 pm

Re: VAR-GARCH-M

Unread post by TomDoan »

You copied a constraint which was specific to the original example which had GDP (which has no GARCH effect) as one of the variables. So you were knocking the GARCH term out of the stock market returns. If you take that out:

nonlin b bvec garchp bvec(1)(38)=0.0

you get a better fitting model. However, you still end up with a positive and (barely) significant coefficient on the oil price volatility. However, other than the error I just pointed out the model is set up correctly.
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

So why "nonlin b bvec garchp bvec(1)(38)=0.0" is specific for GDP and not for stock returns?
TomDoan
Posts: 7814
Joined: Wed Nov 01, 2006 4:36 pm

Re: VAR-GARCH-M

Unread post by TomDoan »

Sorry for the confusion. You copied the following out of the original example (with adjustment for the number of lags)

*
* In an unconstrained estimation, one of the GARCH coefficients goes
* negative. We peg it to zero. The model estimated in the paper also
* constrains the "M" term on the oil price in the oil (1st) equation to
* zero.
*
nonlin b bvec garchp garchp(1)(3)=0.0 bvec(1)(38)=0.0

The first constaint was specific to the Elder-Serletis example. When we estimated the model without it, that parameter went negative, so we re-estimated it constrained. Your data doesn't need it, so your nonlin should read

nonlin b bvec garchp bvec(1)(38)=0.0
economics2012
Posts: 51
Joined: Thu Jan 19, 2012 4:41 pm

Re: VAR-GARCH-M

Unread post by economics2012 »

After editing the error, the coefficient for the retail sector stays positive and highly significant coefficient on the oil price volatility as shown in the attached results. Mainly under line 77 of the last table with a t-stat of 3.21.
77. BVEC(2)(38) 0.041078447 0.012770907 3.21656 0.00129735

Also, after using nonlin b bvec garchp bvec(1)(38)=0.0, I got positive and significant coefficient on the oil price volatility for the aggregate level, which used to be insignificant before adjusting it.


How did you get barely significance? Do I have other errors?
Last edited by economics2012 on Wed May 02, 2012 12:34 pm, edited 1 time in total.
Post Reply