RATS 10.1
RATS 10.1

Paper Replications /

Baillie Bollerslev Mikkelson JOE 1996

Home Page

← Previous Next →

Baillie, Bollerslev and Mikkelson(1996) introduced the FIGARCH (Fractionally Integrated GARCH) model. (Using the authors' notation), if you take the basic univariate GARCH(1,1) model

\begin{equation} \sigma _t^2 = \omega + \alpha \varepsilon _{t - 1}^2 + \beta {\sigma _{t - 1}^2} \end{equation}

it can be rearranged into the form

\begin{equation} \sigma _t^2 - \varepsilon _t^2 = \omega + \beta \left( {\sigma _{t - 1}^2 - \varepsilon _{t - 1}^2} \right) + \left( {1 - \left( {\alpha + \beta } \right)L} \right)\varepsilon _t^2 \end{equation}

If \(\alpha  + \beta  = 1\), this is an IGARCH model. The FIGARCH model uses a fractional, but not full, difference in the final term, which offers a persistent effect, but not quite as persistent as the full IGARCH. This gives the recursion:

\begin{equation} \sigma _t^2 - \varepsilon _t^2 = \omega + \beta \left( {\sigma _{t - 1}^2 - \varepsilon _{t - 1}^2} \right) + {\left( {1 - L} \right)^d}\varepsilon _t^2 \end{equation}

The residuals will be computable exactly given the parameters governing the mean process. The hard part is computing the fractional difference on them:

\begin{equation} {\left( {1 - L} \right)^d}\varepsilon _t^2 \end{equation}

For a fractional value of \(d\), this is an infinite sum which, of course, can't be computed in a finite sample. The authors recommend a truncated sum, which tends to be time-consuming and can be quite inaccurate, depending upon the truncation point. However, RATS has the DIFFERENCE instruction with the FRACTION option to compute this in the frequency domain which is substantially faster. There's still a truncation effect, but it's only when the infinite sum runs off the front end of the data. Since the squared residuals don't have mean zero, the proper procedure is to pad out the filter using a reasonable estimate of the pre-sample values—the obvious choice for that is the sample mean of the squared residuals from a simple linear regression.


The empirical example is on daily log percentage returns on the Deutsche Mark to USD exchange rate. The mean model is just a fixed mean. A simple GARCH(1,1) model is estimated using the GARCH instruction


garch(p=1,q=1,resids=resids,hseries=h,robust) 2 * dm

set ustd = resids/sqrt(h)

@Diagnostics(title="GARCH(1,1) model") ustd

 

The diagnostics used are a Ljung-Box Q test and a McLeod-Li test on the standardized residuals, the former testing for serial correlation in the mean, the latter for serial correlation in the squares.


As a first step towards the complete FIGARCH model, this is re-estimated (using MAXIMIZE) in the rearranged form used in the paper:

 

nonlin(parmset=meanparms) mu

frml meanf = mu

stats dm 2 *

compute uupresample=%variance

set uu = %variance

set h  = %variance

set u  = 0.0

compute mu=%mean

*

nonlin(parmset=garchparms) c phi b

*

compute phi=.80,c=%seesq*(1-phi),b=.70

frml varf = c+b*h{1}+(phi-b)*uu{1}

frml logl = (u=dm-meanf),(uu(t)=u^2),(h(t)=varf(t)),%logdensity(h,u)

maximize(parmset=meanparms+garchparms,pmethod=simplex,piters=5,robust,$

  title="GARCH(1,1)") logl 2 *

 

This largely follows the set up for non-standard univariate GARCH models (and uses the notation from that).

 

The IGARCH model is the same, but with the PHI coefficient pegged to 1 using a restriction in the PARMSET:

 

nonlin(parmset=garchparms) c phi=1.0 b

 

For the actual FIGARCH model, we need to take PHI out of the parameter set and add the fractional difference parameter:

 

nonlin(parmset=garchparms) c b d

set uufilter = 0.0

 

The most important part of the calculation is the generation of \({\left( {1 - L} \right)^d}\varepsilon _t^2\), which, given the parameters, is just "data", and can be computed once at the start of a function evaluation. That's a huge time-saver. This is computed using a FUNCTION called %UUFILTER:

 

function %uufilter d

type real d %uufilter

*

set u  = dm-meanf

set uu = u^2

if d>1.0.or.d<0.0

   set uufilter = %na

else

   diff(fraction=d,pad=uupresample) uu / uufilter

end

 

This computes the residuals (U) by subtracting the MEANF (mean formula defined above in the simpler models) from the data, and the square (UU) of the residuals. If the \(d\) parameter is out-of-range, it just sets the result to the missing value (so the log likelihood will also be the missing value) and otherwise uses DIFFERENCE to create into UUFILTER the fractionally differenced series of the squared residuals. As noted above, this is padded out with the sample variance—more generally, it would be the sample residual variance from the mean model. The FIGARCH model is then estimated with:

 

compute c=uupresample*.1,b=0.7,d=.8

frml varf = c+b*h{1}+uu-b*uu{1}-uufilter

frml logl = (h(t)=varf(t)),%logdensity(h,u)

maximize(startup=%uufilter(d),parmset=meanparms+garchparms,$

  title="FIGARCH(1,1)") logl 2 *

 

The STARTUP option on MAXIMIZE is executed at the start of each function evaluation, so when D changes, a new set of fractionally differenced squared residuals is generated for use in the VARF recursion. The UU series is also "data" given the parameters, so the only thing recursively generated as part of a function evaluation is the variance.

 

Output

All forms of the GARCH models pass the McLeod-Li test for remaining "ARCH". (Not surprisingly, the simple linear regression doesn't). The Ljung-Box tests are all modestly significant at the .05 level, though that's not surprising on a sample this large and the sample autocorrelations in the LB don't indicate any obvious change to the mean model since the first autocorrelation is small. The FIGARCH model fits modestly better than the GARCH(1,1) model with the same number of parameters. The IGARCH model, however, doesn't do as well as either, so the indication is that the persistence isn't quite as strong as an IGARCH would suggest.
 

Linear Regression - Estimation by Least Squares

With Heteroscedasticity-Consistent (Eicker-White) Standard Errors

Dependent Variable DM

Usable Observations                      3453

Degrees of Freedom                       3452

Centered R^2                        0.0000000

R-Bar^2                             0.0000000

Uncentered R^2                      0.0000292

Mean of Dependent Variable       -0.004094322

Std Error of Dependent Variable   0.757813776

Standard Error of Estimate        0.757813776

Sum of Squared Residuals         1982.4204954

Log Likelihood                     -3941.5170

Durbin-Watson Statistic                2.0615

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -0.004094322  0.012894405     -0.31753  0.75084376


 

Statistics for Linear Regression

Observations                  3453

Sample Mean              -0.000000      Variance                   1.000000

Standard Error            1.000000      SE of Sample Mean          0.017018

t-Statistic (Mean=0)     -0.000000      Signif Level (Mean=0)      1.000000

Skewness                 -0.264572      Signif Level (Sk=0)        0.000000

Kurtosis (excess)         3.123205      Signif Level (Ku=0)        0.000000

Jarque-Bera            1443.699457      Signif Level (JB=0)        0.000000


 

LB Test for Linear Regression

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.03079    0.00636    0.03894  0.00006  0.01061  0.01799 -0.01637  0.02518  0.02118 -0.01326

   11        12         13        14       15       16       17       18       19       20

-0.00413    0.02813   -0.00410  0.00526  0.02050 -0.02637 -0.00331 -0.02130  0.01700  0.00115


 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     24.909   0.204927


 

McLeod-Li Test for Linear Regression

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

0.073128   0.051248   0.117492 0.094819 0.045748 0.083191 0.070496 0.065950 0.045200 0.057944

   11        12         13        14       15       16       17       18       19       20

0.087213   0.030837   0.048538 0.042008 0.065029 0.037503 0.025459 0.029290 0.027530 0.027137

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20    262.498   0.000000


 

GARCH Model - Estimation by BFGS

Convergence in    24 Iterations. Final criterion was  0.0000024 <=  0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Dependent Variable DM

Usable Observations                      3453

Log Likelihood                     -3739.2244

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Mean(DM)                     -0.003126454  0.014625306     -0.21377  0.83072630

2.  C                             0.015563137  0.004310822      3.61025  0.00030590

3.  A                             0.112218723  0.016667145      6.73293  0.00000000

4.  B                             0.867440654  0.015638941     55.46671  0.00000000


 

Statistics for GARCH(1,1) model

Observations                  3453

Sample Mean               0.007272      Variance                   0.997940

Standard Error            0.998970      SE of Sample Mean          0.017000

t-Statistic (Mean=0)      0.427779      Signif Level (Mean=0)      0.668839

Skewness                 -0.130318      Signif Level (Sk=0)        0.001779

Kurtosis (excess)         1.769046      Signif Level (Ku=0)        0.000000

Jarque-Bera             460.033889      Signif Level (JB=0)        0.000000


 

LB Test for GARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.00646    0.02044    0.04067  0.02637  0.03282  0.02081 -0.00851  0.03739  0.03303  0.00466

   11        12         13        14       15       16       17       18       19       20

 0.00185    0.03319    0.00611  0.01062  0.02623 -0.02344 -0.00817 -0.01376  0.01403 -0.00397

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     34.161   0.025059


 

McLeod-Li Test for GARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.02274   -0.00885   -0.00808  0.01964 -0.00186  0.00225 -0.00815 -0.00394 -0.00040  0.00365

   11        12         13        14       15       16       17       18       19       20

 0.02170   -0.02028   -0.00860 -0.01012  0.05271 -0.00742 -0.01062 -0.01487 -0.00997 -0.00948

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     19.298   0.502554


 

Statistics on Series DM

Observations                  3453

Sample Mean              -0.004094      Variance                   0.574282

Standard Error            0.757814      SE of Sample Mean          0.012896

t-Statistic (Mean=0)     -0.317481      Signif Level (Mean=0)      0.750898

Skewness                 -0.264572      Signif Level (Sk=0)        0.000000

Kurtosis (excess)         3.123205      Signif Level (Ku=0)        0.000000

Jarque-Bera            1443.699457      Signif Level (JB=0)        0.000000


 

GARCH(1,1) - Estimation by BFGS

Convergence in    10 Iterations. Final criterion was  0.0000012 <=  0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Usable Observations                      3453

Function Value                     -3739.2257

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  MU                           -0.003127146  0.011690734     -0.26749  0.78909243

2.  C                             0.015564047  0.004207479      3.69914  0.00021633

3.  PHI                           0.979657320  0.009603449    102.01098  0.00000000

4.  B                             0.867437697  0.014624695     59.31322  0.00000000


 

Statistics for GARCH(1,1) model

Observations                  3453

Sample Mean               0.007273      Variance                   0.997942

Standard Error            0.998971      SE of Sample Mean          0.017000

t-Statistic (Mean=0)      0.427829      Signif Level (Mean=0)      0.668802

Skewness                 -0.130318      Signif Level (Sk=0)        0.001779

Kurtosis (excess)         1.769044      Signif Level (Ku=0)        0.000000

Jarque-Bera             460.032743      Signif Level (JB=0)        0.000000


 

LB Test for GARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.00646    0.02044    0.04067  0.02637  0.03282  0.02080 -0.00851  0.03739  0.03303  0.00466

   11        12         13        14       15       16       17       18       19       20

 0.00185    0.03319    0.00611  0.01062  0.02623 -0.02344 -0.00817 -0.01376  0.01403 -0.00397

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     34.160   0.025060


 

McLeod-Li Test for GARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.02274   -0.00885   -0.00808  0.01964 -0.00186  0.00225 -0.00815 -0.00394 -0.00040  0.00365

   11        12         13        14       15       16       17       18       19       20

 0.02170   -0.02028   -0.00860 -0.01012  0.05271 -0.00742 -0.01062 -0.01487 -0.00997 -0.00948

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     19.298   0.502528


 

IGARCH(1,1) - Estimation by BFGS

Convergence in     7 Iterations. Final criterion was  0.0000038 <=  0.0000100

With Heteroscedasticity/Misspecification Adjusted Standard Errors

Usable Observations                      3453

Function Value                     -3744.3202

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  MU                           -0.002247957  0.011201870     -0.20068  0.84095118

2.  C                             0.009814451  0.002506598      3.91545  0.00009024

3.  B                             0.872234222  0.014283624     61.06533  0.00000000


 

Statistics for IGARCH(1,1) model

Observations                  3453

Sample Mean               0.006722      Variance                   0.959835

Standard Error            0.979711      SE of Sample Mean          0.016672

t-Statistic (Mean=0)      0.403157      Signif Level (Mean=0)      0.686858

Skewness                 -0.128876      Signif Level (Sk=0)        0.001999

Kurtosis (excess)         1.769156      Signif Level (Ku=0)        0.000000

Jarque-Bera             459.874970      Signif Level (JB=0)        0.000000


 

LB Test for IGARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.00337    0.02295    0.04154  0.02888  0.03570  0.02130 -0.00773  0.03820  0.03406  0.00611

   11        12         13        14       15       16       17       18       19       20

 0.00329    0.03302    0.00752  0.01176  0.02761 -0.02291 -0.00906 -0.01338  0.01384 -0.00414

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     36.695   0.012727


 

McLeod-Li Test for IGARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.02720   -0.01012   -0.01405  0.01513 -0.00106 -0.00397 -0.01097 -0.00681 -0.00379  0.00127

   11        12         13        14       15       16       17       18       19       20

 0.01569   -0.02081   -0.01278 -0.01480  0.04839 -0.00991 -0.01258 -0.01642 -0.01205 -0.01242

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     19.748   0.473786


 

FIGARCH(1,1) - Estimation by BFGS

Convergence in    16 Iterations. Final criterion was  0.0000058 <=  0.0000100

Usable Observations                      3453

Function Value                     -3737.1774

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  MU                           -0.003642590  0.011785040     -0.30909  0.75725618

2.  C                             0.016164333  0.003873996      4.17252  0.00003012

3.  B                             0.764660286  0.048458941     15.77955  0.00000000

4.  D                             0.826172682  0.058619348     14.09386  0.00000000


 

Statistics for FIGARCH(1,1) model

Observations                  3453

Sample Mean               0.008639      Variance                   0.968112

Standard Error            0.983927      SE of Sample Mean          0.016744

t-Statistic (Mean=0)      0.515943      Signif Level (Mean=0)      0.605927

Skewness                 -0.130232      Signif Level (Sk=0)        0.001791

Kurtosis (excess)         1.723506      Signif Level (Ku=0)        0.000000

Jarque-Bera             437.137273      Signif Level (JB=0)        0.000000


 

LB Test for FIGARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

-0.00254    0.02193    0.04060  0.02762  0.03530  0.01960 -0.00616  0.03742  0.03402  0.00729

   11        12         13        14       15       16       17       18       19       20

 0.00526    0.03280    0.00694  0.01113  0.02738 -0.02297 -0.01003 -0.01446  0.01615 -0.00278

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     35.704   0.016661

 

McLeod-Li Test for FIGARCH(1,1) model

 

Autocorrelations

   1         2          3         4        5        6        7        8        9        10

 0.00480   -0.01358   -0.02052  0.00470 -0.00978 -0.01144 -0.01726 -0.01025 -0.00331  0.00776

   11        12         13        14       15       16       17       18       19       20

 0.01045   -0.01983   -0.01069 -0.01140  0.05520 -0.00538 -0.01084 -0.01529 -0.00737 -0.01207

 

Ljung-Box Q-Statistics

    Lags  Statistic Signif Lvl

      20     19.857   0.466925

 


Copyright © 2025 Thomas A. Doan