RATS 10.1
RATS 10.1

Examples /

EXAMPLEFIVE.RPF

Home Page

← Previous Next →

EXAMPLEFIVE.RPF is the example from Section 1.6 in the Introduction. This works with cross section data, showing the use of the SMPL option to restrict subsamples based upon the value of a series, and use of SCATTER to generate an x-y graph.

Full Program

 

open data wages1.dat
data(format=prn,org=columns) 1 3294 exper male school wage
*
* Do basic statistics on the two subsamples. The first is where "male" is
* non-zero, the second where .not.male is non-zero, that is, where male
* itself is zero.
*
stats(smpl=male) wage
stats(smpl=.not.male) wage
*
* The regression on constant and the male dummy will give the same type
* of information in a form which will usually be easier to interpret. The
* coefficient on the intercept will be the same as the mean for the
* females, while the coefficient on the male dummy is the difference
* between the mean for males and the mean for females.
*
linreg wage
# constant male
*
* Adds school and exper to the regression and test the joint
* significance of the two additional variables.
*
linreg wage
# constant male school exper
*
* This is generated by the Regression Tests Wizard
*
test(zeros)
# 3 4
*
* The same test can also be done using EXCLUDE
*
exclude
# school exper
*
* Generate the fitted values from the original regression and do an
* Actual-Fitted graph.
*
linreg wage
# constant school
prj wagefit
*
scatter(style=symbols,overlay=lines,ovsame,$
  vlabel="Hourly Wages",hlabel="Years of School") 2
# school wage
# school wagefit

Output

 

Statistics on Series WAGE

Observations                  1725      Skipped/Missing                1569

Sample Mean               6.313021      Variance                  12.242031

Standard Error            3.498861      SE of Sample Mean          0.084243

t-Statistic (Mean=0)     74.938512      Signif Level (Mean=0)      0.000000

Skewness                  1.921402      Signif Level (Sk=0)        0.000000

Kurtosis (excess)         8.845542      Signif Level (Ku=0)        0.000000

Jarque-Bera            6685.148147      Signif Level (JB=0)        0.000000


 

Statistics on Series WAGE

Observations                  1569      Skipped/Missing                1725

Sample Mean               5.146924      Variance                   8.272740

Standard Error            2.876237      SE of Sample Mean          0.072613

t-Statistic (Mean=0)     70.881766      Signif Level (Mean=0)      0.000000

Skewness                  1.977027      Signif Level (Sk=0)        0.000000

Kurtosis (excess)        10.989324      Signif Level (Ku=0)        0.000000

Jarque-Bera            8917.135961      Signif Level (JB=0)        0.000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3292

Centered R^2                        0.0317459

R-Bar^2                             0.0314517

Uncentered R^2                      0.7639932

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.2173642756

Sum of Squared Residuals         34076.917047

Regression F(1,3292)                 107.9338

Significance Level of F             0.0000000

Log Likelihood                     -8522.2280

Durbin-Watson Statistic                1.8662

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     5.1469238679 0.0812248211     63.36639  0.00000000

2.  MALE                         1.1660972915 0.1122421588     10.38912  0.00000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3290

Centered R^2                        0.1325877

R-Bar^2                             0.1317968

Uncentered R^2                      0.7885729

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.0461431195

Sum of Squared Residuals         30527.870207

Regression F(3,3290)                 167.6302

Significance Level of F             0.0000000

Log Likelihood                     -8341.0906

Durbin-Watson Statistic                1.9051

 

    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -3.380018181  0.464976503     -7.26922  0.00000000

2.  MALE                          1.344368629  0.107675888     12.48533  0.00000000

3.  SCHOOL                        0.638797702  0.032795844     19.47801  0.00000000

4.  EXPER                         0.124825450  0.023762761      5.25299  0.00000016


 

Null Hypothesis : The Following Coefficients Are Zero

SCHOOL

EXPER

F(2,3290)=    191.24105 with Significance Level 0.00000000


 

Null Hypothesis : The Following Coefficients Are Zero

SCHOOL

EXPER

F(2,3290)=    191.24105 with Significance Level 0.00000000


 

Linear Regression - Estimation by Least Squares

Dependent Variable WAGE

Usable Observations                      3294

Degrees of Freedom                       3292

Centered R^2                        0.0798020

R-Bar^2                             0.0795225

Uncentered R^2                      0.7757067

Mean of Dependent Variable       5.7575850178

Std Error of Dependent Variable  3.2691857840

Standard Error of Estimate       3.1365065226

Sum of Squared Residuals         32385.620064

Regression F(1,3292)                 285.4910

Significance Level of F             0.0000000

Log Likelihood                     -8438.3863

Durbin-Watson Statistic                1.8265


    Variable                        Coeff      Std Error      T-Stat      Signif

************************************************************************************

1.  Constant                     -0.722506571  0.387391365     -1.86506  0.06226247

2.  SCHOOL                        0.557161695  0.032975021     16.89648  0.00000000

 

Graph

 

 


Copyright © 2025 Thomas A. Doan