RATS 10.1
RATS 10.1

Functions /

Distribution and Probability Functions

Home Page

← Previous Next →

These are density and distribution functions for various univariate and multvariate densities. Random number functions are in a separate section.


 

%betainc(x,a,b)

Incomplete beta function

%bicdf(x0,y0,rho)

Bivariate standard Normal CDF with correlation Rho

%binomial(x,n)

Binomial coefficient

%binomialcdf(k,n,p)

Cumulative binomial probability

%binomialk(k,n,p)

Binomial probability

%cdf(x)       

Cumulative density function of standard Normal

%chisqr(x,r)

Chi-squared tail probability

%chisqrdensity(x,r)

Density of the Chi-squared

%chisqrnc(x,r,nc)

Non-central chi-square CDF

%chisqrncdensity(x,r,nc)

Density of the non-central chi-squared

%density(x)       

Standard Normal density function

%digamma(x)       

Digamma function (derivative of the log gamma)

%dmills(x)       

Derivative of the inverse Mills’ ratio

%factorial(x)

Factorial function

%ftest(x,n,m)

F test tail probability

%gamma(a)       

Gamma function

%gammainc(x,a)

Incomplete gamma function

%gedcdf(x,s)

CDF of GED distribution

%gevcdf(x,k,m,s)

CDF of generalized extreme value distribution

%gpcdf(x,k,m,s)

CDF of generalized Pareto distribution

%invchisqr(p,r)

Inverse Chi-squared test

%invchisqrnc(p,r)

Inverse non-central chi-square CDF

%invftest(p,n,m)

Inverse F-test

%invged(p,c)

Inverse GED CDF

%invgev(p,k,m,s)

Inverse Generalized Extreme Value CDF

%invgp(p,k,m,s)

Inverse generalized Pareto CDF

%invnormal(p)

Inverse Normal distribution CDF

%invtcdf(p,d)

Inverse Student-t CDF

%invttest(p,r)

Inverse Student-t test

%invztest(p)

Inverse two-tailed Normal

%lnbeta(a,b)

Natural log of Beta function

%lngamma(x)       

Natural log of the Gamma function

%lnlogistic(x)

Log of the logistic CDF

%logbetadensity(x,a,b)

Log density of Beta distribution

%logcdf(v,x)

Log of the Normal CDF

%logconcdensity(S,v)

Log concentrated multivariate Normal density

%logdensity(A,v)

Log multivariate or univariate Normal density

%logdensitycv(S1,S2,n)

Log multivariate Normal density as function of S

%logdensitydiag(v,u)

Diagonal multivariate log Normal density

%logdirichlet(x,d)

Log Dirichlet density (x and d are VECTOR's)

%loggammadensity(X,A,B)

Log density of gamma, with shape parameter a and scale b.

%loggeddensity(x,c,v)

Log GED density

%loggevdensity(x,k,mu,s)

Log GEV density

%loggpdensity(x,k,mu,s)

Log generalized Pareto density

%loginvchisqrdensity(x,df,scale)

Log inverse (scaled) chi-squared density

%loginvgammadensity(x,a,b)

Log inverse gamma density

%logistic(x)

Logistic function

%lognegbin(x,r,p)

Log of the negative binomial density

%logpoissonk(mean,k)

Log of Poisson probability for k successes

%logtdensity(V,U,nu)

Log univariate or multivariate t density

%logtdensitystd(V,U,nu)

Standardized log univariate or multivariate t density. This is equivalent to:%logtdensity(v*nu/(nu-2),u,nu)

%mills(x)

Inverse Mills’ ratio

%negbin(x,r,p)

Negative binomial density

%nyblomtest(x,p)

Nyblom fluctuations test significance level

%poisson(mean,k)

Poisson cumulative distribution

%poissonk(mean,k)

Poisson probability of having exactly k successes

%qformpdf(A,x)

CDF of quadratic form of Normals

%qformdpdf(D,x)

CDF of diagonal quadratic form

%tcdf(x,nu)

CDF for a Student-t distribution

%tcdfnc(x,r)

CDF for non-central t density

%tdensity(x,r)

Student-t density

%tdensitync(x,r)

Non-central t density

%trigamma(x)

Trigamma function (second derivative of log gamma)

%ttest(x,n)

Two-tailed t test

%ztest(x)

Two-tailed standard Normal probability

 


Copyright © 2025 Thomas A. Doan